Log in

Potential blue carbon from coastal ecosystems in the Republic of Korea

  • Review
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

The sequestration of carbon dioxide (CO2) from the atmosphere and ocean into coastal ecosystems such as seaweed beds, seagrasses, saltmarshes, and tidal flats is an important and emerging area of interest due to their valuable role in carbon storage and potential for moderating climate conditions. Here, we investigated how these ecosystems in Korea can serve as carbon sinks and estimated the amount of CO2 that might be removed through aquaculture beds, artificial reefs, and sea forests. We also examined the benefits of restoring degraded coastal ecosystems. In total, we estimated that the 0.38 × 106 ha covered by Korean coastal ecosystems could potentially lock up approximately 1.01 × 106 t of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beavis A, Charlier RH (1987) An economic appraisal for the onshore cultivation of Laminaria spp. Hydrobiologia 151/152:387–398

    Article  Google Scholar 

  • Chmura GL, Anisfield SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17:1111. doi: 10.1029/2002GB001917

    Article  Google Scholar 

  • Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886

    Article  Google Scholar 

  • Chung IK, Oak JH, Lee JA, Shin JA, Kim JG, Park KS (2013) Installing kelp forest/seaweed beds for mitigation and adaptation against global warming: Korean Project overview. ICES J Mar Sci 70:1038–1044. doi: 10.1093/icesjms/fss206

    Article  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Delille B, Borges AV, Delille D (2009) Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the sub-Antarctic Coastal Area. Estuar Coast Shelf Sci 81:114–122

    Article  Google Scholar 

  • Dierssen, HM, Zimmerman RC, Drake RA, Burdige DJ (2009) Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation. Geophys Res Lett 36:L04602. doi: 10.1029/2008GL036188, 2009

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8. doi: 10.5194/bg-2-1-2005

    Article  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Kodam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  Google Scholar 

  • FAO (2014) FIGIS statistic: global aquaculture production 1950–2012. http://www.fao.org/figis/servlet/TabSelector Accessed 9 Sep 2014

    Google Scholar 

  • Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  • Gao K, McKinley KR (1995) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Grimsditch G, Chung IK (2012) Coastal blue carbon. PICES Press 20(2):18–20

    Google Scholar 

  • Han Y (2008) The characteristics of halophyte vegetation of salt marshes in the southern and western Coasts of Korea. M.S. Thesis, Mokpo National University, Korea

    Google Scholar 

  • Harrold C, Light K, Lisin S (1998) Organic enrichment of submarinecanyon and continental shelf benthic communities by macroalgal drift imported form nearshore kelp forests. Limnol Oceanogr 43:669–678

    Article  Google Scholar 

  • Howard J, Hoyt S, Isensee K, Pidgeon E, Telszewski M (eds) (2014) Coastal blue carbon: methods for assessing blue carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, VA, USA

    Google Scholar 

  • International Working Group on Coastal Blue Carbon (2011) Minimizing carbon sequestration and storage by seagrasses, tidal marshes, mangroves. http://climate-l.iisd.org/news/blue-carbon-workinggroup-releases-recommendations/Accessed 30 Sep 2014

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: assessment report. IPCC, Valencia, Spain

    Book  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Coastal wetlands. In: Alongi D, Karim A, Kennedy H, Chen G, Chmura G, Crooks S. et al. (eds) 2013 Supplement to the 2006 IPCC guidelines for National Green House Gas Inventories

  • Ito Y, Nakano Y, Matsushita S, Mikami N, Yokoyama J, Kirihara S, Notoya M (2009) Estimations of quantities of carbon storage by seaweed and seagrass beds. Food and Agricultural Organization of United Nations, http://agris.fao.org/agris-search/search.do?recordID=JP2010001063 Accessed 7 Oct 2014

    Google Scholar 

  • Jung JT (1988) Current situation of seaweed aquaculture development in Korea. Report on training course on seaweed farming by Food and Agricultural Organization, pp 100–125

    Google Scholar 

  • KACCC (Korean Adaptation Center for Climate Change) (2013) Adaptation. KACCC Newsletter Spring 2013. http://ccas.kei.re.kr Accessed 30 Sep 2014

    Google Scholar 

  • Kang CK, Choy EJ, Son Y, Lee JY, Kim JK, Kim Y, Lee KS (2008) Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Mar Biol 153:1181–1198

    Article  Google Scholar 

  • Kang RS (2010) A review of destruction of seaweed habitats along the coast of the Korean Peninsula and its consequences. Bull Fish Res Agen 32:25–31

    Google Scholar 

  • Kennedy H, Bjork M (2009) Seagrass meadows. In: Laffoley Dd’A, Grimsditch G (eds) The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. pp 53

    Google Scholar 

  • Kim JE (2013) Land use management and cultural value of ecosystem services in southwestern Korean Islands. J Mar Island Cult 2:49–55

    Article  Google Scholar 

  • Kim YD, Shim JM, Park MS, Hong J-P, You HI, Min BH, ** H-J, Yarish C, Kim JK (2013) Size determination of Ecklonia cava for successful transplantation onto artificial seaweed reef. Algae 28:265–369

    Google Scholar 

  • Koo BJ, Je JG, Woo HJ (2011) Experimental restoration of a salt marsh with some comments on ecological restoration of coastal vegetated ecosystems in Korea. Ocean Sci J 46(1):47–53

    Article  Google Scholar 

  • KOSTAT (2012) Food, agriculture, forestry and fisheries: Korea statistics yearbook 2012. Ministry For Food, Agriculture, Forestry and Fisheries, Korea, 477 p

    Google Scholar 

  • Lee IK, Kang JW (1986) A check list of marine algae in Korea. Kor J Phycol 1:311–325

    Google Scholar 

  • Lee S, Cho Y, Lee CS (2012) Feasibility of seed bank for restoration of salt marsh: a case study around the Gwangyang Bay, southern Korea. J Ecol Field Biol 35(2):123–129

    Article  Google Scholar 

  • Mann KH (1972) Ecological energetics of the sea-weed zone in a marine bay on the Atlantic Coast of Canada. I. Zonation and biomass of seaweeds. Mar Biol 12:1–10

    Google Scholar 

  • Ministry of Environment (2006) Development of ecological conservation and management techniques of halophyte communities on salt marshes of southwestern coasts in Korea. Korea Institute of Environmental Science and Technology, Seoul

    Google Scholar 

  • Moore N (2002) Wetlands — Korea’s Most-Threatened Habitat. OBC Bulletin No. 36 http://orientalbirdclub.org/korean-wetlands/ Accessed 29 Sep 2014

  • Muraoka D (2004) Seaweed resources as a source of carbon fixation. Bull Fish Res Agen 1:59–63

    Google Scholar 

  • Murray BC, Pendleton L, Jenkins WA, Sifleet S (2011) Green payments for blue carbon: economic incentives for protecting threatened coastal habitats. Nicholas Institute Report, 42 p

    Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdes L, De Young C, Fonseca L, Grimsditch G (2009) Blue Carbon: a rapid response assessment. United Nations Environment Programme, GRID-Arendal, 80 p

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marba N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emission from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9):1–7

    Article  Google Scholar 

  • Park GS, Lee SM, Lim SM (2008) Identification of critical habitats. Yellow Sea Large Marine Ecosystem Project: Habitat Classification and Selection Representative Habitats in the West Coast of Korea. UNDP/GEF Report

    Google Scholar 

  • Reed DC, Brzezinski MA (2009) Kelp forest. In: Laffoley Dd’A, Grimsditch G (eds) The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. 53 p

    Google Scholar 

  • Siikamaki J, Sanchirico JN, Jardine S, McLaughin D, Morris DF (2012) Blue carbon: global options for reducing emissions from the degradation and development for coastal ecosystem. Resource for the future. Washington, DC, USA. 60 p

    Google Scholar 

  • Sohn CH (2014) Seaweed aquaculture in Korea: history and future. In: Proceedings of the 2014 annual meeting of the Korean society of phycology, Wando International Marine Algal Symposium “Seaweed for Future Industry”. pp 214

    Google Scholar 

  • Tang Q, Zhang J, Fang J (2011) Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystem. Mar Ecol-Prog Ser 424:97–104

    Article  Google Scholar 

  • Tidal Flat Korea (2014) Korean tidal flats information. http://www.tidalflat.go.kr Accessed 27 Sep 2014

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. P Natl Acad Sci USA 106(30):12377–12381

    Article  Google Scholar 

  • Yusoff FM, Shariff M, Gopinath N (2006) Diversity of Malaysian aquatic ecosystems and resources. Aquat Ecosyst Health 9:119–135

    Article  Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilization: an end-of-century summary. J Appl Phycol 11:369–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ik Kyo Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sondak, C.F.A., Chung, I.K. Potential blue carbon from coastal ecosystems in the Republic of Korea. Ocean Sci. J. 50, 1–8 (2015). https://doi.org/10.1007/s12601-015-0001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-015-0001-9

Keywords

Navigation