Log in

Programming an efficient technique for designing smart C-doped MIC with dual self-protection for information and high-energy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Constructing self-protected metastable intermolecular composites (MICs) enables the regulation of microstructures towards boosting controllable detonation performance, and also prevents information leakage, which is meaningful but challenging. Herein, a convenient and efficient method of combining highly-controlled electrophoretic assembly, surface modification and microwave heat treatment was employed to design promising heat-triggered wettability switchable high-energy smart C-doped Al/Cr2O3 MIC, and surface modification mechanism was proposed, respectively. The anti-wetting ability of the product was demonstrated by a series of tests of water contact angle, impact resistance, immersion, self-cleaning, etc. The key information recording/encryption procedures were realized by constructing a hydrophilic/hydrophobic interface and adjusting the wettability of the product. In addition, the output heat of asobtained smart MIC can reach ~ 1.5 kJ·g−1, and its attenuation rate was only ~ 30% even after underwater aging, further verifying its potential practicality. Thus, our design provides a promising strategy for engineering smart MIC with diversified functional structures for blasting applications and beyond.

Graphical abstract

摘要

构建自保护亚稳态分子间复合材料(MICs),既能调控微结构,提高可控爆轰性能,又能防止信息泄漏,具有重要意义,但也具有挑战性。本文采用一种简便高效的方法,结合高度可控的电泳组装、表面修饰和微波热处理,设计了具有前景的热触发润湿性可切换高能智能碳掺杂Al/Cr2O3 MIC,并提出了表面修饰机理。通过水接触角、抗冲击性、浸没性、自洁性等一系列试验,验证了产品的抗润湿能力。通过构建亲疏水界面和调节产品润湿性,实现了关键信息的记录/加密过程。此外,所得智能MIC的发热量可达~1.5 kJ·g−1,即使经过水下老化,其衰减率也仅到~30%,进一步验证了其潜在的实用性。因此,我们的设计为具有多种功能结构的智能MIC的工程设计提供了一个有前景的策略,用于爆破及其他领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lanza M, Sebastian A, Lu WD, Gallo ML, Chang MF, Akinwande D, Puglisi FM, Alshareef HN, Liu M, Roldan JB. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science. 2022;376:eabj979. https://doi.org/10.1126/science.abj9979.

    Article  CAS  Google Scholar 

  2. Guo XG, Liang TT, Tetteh AJ, Islam ML, Huang HS, Yuan BF, Cui X. In situ molecule-level interface tailoring of metastable intermolecular composite chips toward on-demand heat release and information encryption. J Mater Chem A. 2023;11:26465. https://doi.org/10.1039/D3TA04408D.

    Article  CAS  Google Scholar 

  3. Liu X, Lin ZX, Shi YB, Wang XY, Ding MY, Yang XF. Dynamic manipulation of multimodal emission in Er3+-activated non-core-shell structure for optical thermometry and information security. Rare Met. 2024;43(4):1702. https://doi.org/10.1007/s12598-023-02492-w.

    Article  CAS  Google Scholar 

  4. Li J, Wu NT, Zhang J, Wu HH, Pan KM, Wang YX, Liu GL, Liu XM, Yao ZP, Zhang QB. Machine learning-assisted low-dimensional electrocatalysts design for hydrogen evolution reaction. Nano-Micro Lett. 2023;15:227. https://doi.org/10.1007/s40820-023-01192-5.

    Article  CAS  Google Scholar 

  5. Wang RJ, Zhang Y, Lu W, Wu BY, Wei SX, Wu SS, Wang WQ, Chen T. Bio-inspired structure-editing fluorescent hydrogel actuators for environment-interactive information encryption. Angew Chem Int Ed. 2023;62:e202300417. https://doi.org/10.1002/anie.202300417.

    Article  CAS  Google Scholar 

  6. He XY, Zhang JY, Liu XY, ** ZW, Lam JWY, Tang BZ. A multiresponsive functional AIEgen for spatiotemporal pattern control and all-round information encryption. Angew Chem Int Ed. 2023;135:e202300353. https://doi.org/10.1002/ange.202300353.

    Article  Google Scholar 

  7. Lin SY, Tang YQ, Kang WX, Bisoyi HK, Guo JB, Li Q. Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption. Nat Commun. 2023;14:3005. https://doi.org/10.1038/s41467-023-38801-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng LL, Li JZ, Wen M, ** DM, Zhu YX, Wei Q, Zhang XB, Ke GL, **a F, Gao ZF. Enthalpy and entropy synergistic regulation-based programmable DNA motifs for biosensing and information encryption. Sci Adv. 2023;9:eadf5868. https://doi.org/10.1126/sciadv.adf5868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma XX, Li YX, Hussain I, Shen RQ, Yang GC, Zhang KL. Core-shell structured nanoenergetic materials: preparation and fundamental properties. Adv Mater. 2020;32:2001291. https://doi.org/10.1002/adma.202001291.

    Article  CAS  Google Scholar 

  10. Cheng J, Zhang ZH, Wang YT, Li FW, Cao JL, Gozin M, Ye YH, Shen RQ. Do** of Al/CuO with microwave absorbing Ti3C2 MXene for improved ignition and combustion performance. Chem Eng J. 2023;451:138375. https://doi.org/10.1016/j.cej.2022.138375.

    Article  CAS  Google Scholar 

  11. Wang J, Qu YY, Gong FY, Shen JP, Zhang L. A promising strategy to obtain high energy output and combustion properties by self-activation of nano-Al. Combust Flame. 2019;204:220. https://doi.org/10.1016/j.combustflame.2019.03.016.

    Article  CAS  Google Scholar 

  12. Jian GQ, Feng JY, Jacob RJ, Egan GC, Zachariah MR. Super-reactive nanoenergetic gas generators based on periodate salts. Angew Chem Int Ed. 2013;52:9743. https://doi.org/10.1002/anie.201303545.

    Article  CAS  Google Scholar 

  13. He W, Liu PJ, He GQ, Gozin M, Yan QL. Highly reactive metastable intermixed composites (MICs): preparation and characterization. Adv Mater. 2018;30:1706293. https://doi.org/10.1002/adma.201706293.

    Article  CAS  Google Scholar 

  14. Zhong Y, **e YJ, Wang SH, Wang Q, Cha JJ, Su D, Wang HL. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew Chem Int Edit. 2020;59:14003. https://doi.org/10.1002/anie.202004477.

    Article  CAS  Google Scholar 

  15. Luo QP, Liu GX, Zhu MS, Jiang XH. Constant volume combustion properties of Al/Fe2O3/RDX nanocomposite: the effects of its particle size and chemical constituents. Combust Flame. 2022;238:111938. https://doi.org/10.1016/j.combustflame.2021.111938.

    Article  CAS  Google Scholar 

  16. Slocik JM, McKenzie R, Dennis PB, Naik RR. Creation of energetic biothermite inks using ferritin liquid protein. Nat Commun. 2017;8:1. https://doi.org/10.1038/ncomms15156.

    Article  Google Scholar 

  17. Lee K, Kim D, Shim J, Bae S, Shin DJ, Treml BE, Yoo J, Hanrath T, Kim WD, Lee DC. Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: investigation of off-stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change. Combust Flame. 2015;162:3823. https://doi.org/10.1016/j.combustflame.2015.07.019.

    Article  CAS  Google Scholar 

  18. Zhang TF, Wang Z, Li GP, Luo YJ. Tuning the reactivity of Al/Fe2O3 nanoenergetic materials via an approach combining soft template self-assembly with sol-gel process process. J Solid State Chem. 2015;230:1. https://doi.org/10.1016/j.jssc.2015.06.021.

    Article  CAS  Google Scholar 

  19. Wu T, Singh V, Julien B, Tenailleau C, Esteve A, Rossi C. Pioneering insights into the superior performance of titanium as a fuel in energetic materials. Chem Eng J. 2023;453:139922. https://doi.org/10.1016/j.cej.2022.139922.

    Article  CAS  Google Scholar 

  20. Yin YJ, Dong Y, Li ML, Ma ZL. Simultaneously altering the energy release and promoting the adhesive force of an electrophoretic energetic film with a fluoropolymer. Langmuir. 2022;38:2569. https://doi.org/10.1021/acs.langmuir.1c03170.

    Article  CAS  PubMed  Google Scholar 

  21. Lebedev EA, Sorokina LI, Trifonov AY, Ryazanov RM, Pereverzeva SY, Gavrilov SA, Gromov DG. Influence of composition on energetic properties of copper oxide-aluminum powder nanothermite materials formed by electrophoretic deposition. Propell Explos Pyrot. 2022;2:e202100292. https://doi.org/10.1002/prep.202100292.

    Article  CAS  Google Scholar 

  22. Zhou X, Xu DG, Lu J, Zhang KL. CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property. Chem Eng J. 2015;266:163. https://doi.org/10.1016/j.cej.2014.12.087.

    Article  CAS  Google Scholar 

  23. El-Naggar ME, Ullah S, Wageh S, Abu-Saied MA, Khattab TA, Alhashmialameer D, Taleb MA, Matter EA. Preparation of epoxy resin/rare earth doped aluminate nanocomposite toward photoluminescent and superhydrophobic transparent woods. J Rare Earth. 2023;3:397. https://doi.org/10.1016/j.jre.2022.04.018.

    Article  CAS  Google Scholar 

  24. Peng CY, Chen ZY, Tiwari MK. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nature Mater. 2018;17:355. https://doi.org/10.1038/s41563-018-0044-2.

    Article  CAS  Google Scholar 

  25. McBride SA, Girard HL, Varanas KK. Crystal critters: self-ejection of crystals from heated, superhydrophobic surfaces. Sci Adv. 2021;7:eabe6960. https://doi.org/10.1126/sciadv.abe6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou X, Xu DG, Yang GC, Zhang QB, Shen JP, Lu J, Zhang KL. Highly exothermic and superhydrophobic Mg/fluorocarbon core/shell nanoenergetic arrays. ACS Appl Mater Interfaces. 2014;6:10497. https://doi.org/10.1021/am502078e.

    Article  CAS  PubMed  Google Scholar 

  27. Yu CP, Zhang WC, Gao Y, Ni DB, Ye JH, Zhu CG, Ma KF. The super-hydrophobic thermite film of the Co3O4/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance. Chem Eng J. 2018;338:99. https://doi.org/10.1016/j.cej.2017.12.129.

    Article  CAS  Google Scholar 

  28. Guo XG, Liang TT, Huang HS, Yuan BF, Wang J. Additive-Free Super-reactive metastale intermixed C-doped Al/Co3O4 coating with excellent structural, exothermic and hydrophobic stability for a transient-chip. Appl Surf Sci. 2022;581:152324. https://doi.org/10.1016/j.apsusc.2021.152324.

    Article  CAS  Google Scholar 

  29. Guo XG, Lu CH, Huang HS, Cui X, Liang TT, Yuan BF, Wang J, Li XM. Facilely controllable synthesis of multi-functional aluminum/nickel/perfluorosilane composites for enhancing the thermal energy release stability and enhancing anti-wetting properties. Compos Sci Technol. 2020;99:108351. https://doi.org/10.1016/j.compscitech.2020.108351.

    Article  CAS  Google Scholar 

  30. Guo XG, Lai C, Jiang X, Mi WH, Yin YJ, Li XM, Shu YJ. Remarkably facile fabrication of extremely superhydrophobic high-energy binary composite with ultralong lifespan. Chem Eng J. 2018;335:843. https://doi.org/10.1016/j.cej.2017.11.002.

    Article  CAS  Google Scholar 

  31. Zhang DX, **ang Q, Li XM. Highly reactive Al-Cr2O3 coating for electric-explosion applications. RSC Adv. 2016;6:100790. https://doi.org/10.1039/C6RA21752D.

    Article  CAS  Google Scholar 

  32. Gibot P, Comet M, Eichhorn A, Schnell F, Muller O, Ciszek F, Boehrer Y, Spitzer D. Highly insensitive/reactive thermite prepared from Cr2O3 nanoparticles. Propell Explos Pyrot. 2011;36:80. https://doi.org/10.1002/prep.201000080.

    Article  CAS  Google Scholar 

  33. Cui S, Zhai HM, Li WS, Tong W, Li XS, Cai AH, Fan XJ, Li XQ, **ong DS. Superhydrophobic Fe-based amorphous coating fabricated by detonation spraying with excellent anti-corrosion and self-cleaning properties. Rare Met. 2023;42(2):629. https://doi.org/10.1007/s12598-022-02130-x.

    Article  CAS  Google Scholar 

  34. Wu SW, Jiang QT, Yuan S, Zhao QK, Liu C, Tang H, Sun Q, Duan JZ, Hou BR. Environmentally friendly expanded graphite-doped ZnO superhydrophobic coating with good corrosion resistance in marine environment. Rare Met. 2023;42(9):3075. https://doi.org/10.1007/s12598-023-02359-0.

    Article  CAS  Google Scholar 

  35. Guo XG, Li XM, Lai C, Jiang X, Li XL, Shu YJ. Facile approach to the green synthesis of novel ternary composites with excellent superhydrophobic and thermal stability property: an expanding horizon. Chem Eng J. 2017;309:240. https://doi.org/10.1016/j.cej.2016.10.042.

    Article  CAS  Google Scholar 

  36. Ren WJ, Lu S, Yu CQ, He J, Chen J. Carbon honeycomb structure with high axial thermal transport and strong robustness. Rare Met. 2023;42(8):2679. https://doi.org/10.1007/s12598-023-02314-z.

    Article  CAS  Google Scholar 

  37. Chen XH, Kong LH, Dong D, Yang GB, Yu LG, Chen JM, Zhang PY. Synthesis and characterization of superhydrophobic functionalized Cu(OH)2 nanotube arrays on copper foil. Appl Surf Sci. 2009;255:4015. https://doi.org/10.1016/j.apsusc.2008.10.104.

    Article  CAS  Google Scholar 

  38. Dapoz S, Betz N, Guittet MJ, Moel AL. ESCA characterization of heparin-like fluoropolymers obtained by functionalization after grafting induced by swift heavy ion irradiation. Nucl Instrum Meth B. 1995;105:120. https://doi.org/10.1016/0168-583X(95)00823-3.

    Article  CAS  Google Scholar 

  39. Cao ZQ, Zuo CY. Cr2O3/carbon nanosheet composite with enhanced performance for lithium ion batteries. RSC Adv. 2017;7:40243. https://doi.org/10.1039/C7RA06188A.

    Article  CAS  Google Scholar 

  40. Iatsunskyi I, Gottardi G, Micheli V, Canteri R, Coy E, Bechelany M. Atomic layer deposition of palladium coated TiO2/Si nanopillars: ToF-SIMS, AES and XPS characterization study. Appl Surf Sci. 2021;542:148603. https://doi.org/10.1016/j.apsusc.2020.148603.

    Article  CAS  Google Scholar 

  41. Guo XG, Li XM, Wei ZB, Li XL, Niu LD. Rapid fabrication and characterization of superhydrophobic tri-dimensional Ni/Al coatings. Appl Surf Sci. 2016;387:8. https://doi.org/10.1016/j.apsusc.2016.06.068.

    Article  CAS  Google Scholar 

  42. Xu WJ, Song JL, Sun J, Lu Y, Yu ZY. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl Mater Interfaces. 2011;3:4404. https://doi.org/10.1021/am2010527.

    Article  CAS  PubMed  Google Scholar 

  43. Song JL, Xu WJ, Liu X, Lu Y, Wei ZF, Wu LB. Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method. Chem Eng J. 2012;211:143. https://doi.org/10.1016/j.cej.2012.09.094.

    Article  CAS  Google Scholar 

  44. Larmour IA, Bell SEJ, Saunders GC. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem Int Ed. 2007;119:1740. https://doi.org/10.1002/ange.200604596.

    Article  Google Scholar 

  45. Lu Y, Sathasivam S, Song JL, Crick CR, Carmalt CJ, Parkin IP. Robust self-cleaning surfaces that function when exposed to either air or oil. Science. 2015;347:1132. https://doi.org/10.1126/science.aaa0946.

    Article  CAS  PubMed  Google Scholar 

  46. Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano. 2010;4:7699. https://doi.org/10.1021/nn102557p.

    Article  CAS  PubMed  Google Scholar 

  47. Quan YY, Zhang LZ. Numerical and analytical study of the im**ing and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures. Langmuir. 2014;30:11640. https://doi.org/10.1021/la502836p.

    Article  CAS  PubMed  Google Scholar 

  48. Deng X, Mammen L, Butt HJ, Vollmer D. Candle soot as a template for a transparent robust superamphiphobic coating. Science. 2012;335:67. https://doi.org/10.1126/science.1207115.

    Article  CAS  PubMed  Google Scholar 

  49. Li SC, Deng BL, Grinthal A, Yamamura AS, Kang JL, Martens RS, Zhang CT, Li J, Yu SQ, Bertoldi K, Aizenberg J. Liquid-induced topological transformations of cellular microstructures. Nature. 2021;592:386. https://doi.org/10.1038/s41586-021-03404-7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang MC, Pal A, Zheng ZQ, Gardi G, Yildiz E, Sitti M. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability. Nat Mater. 2023;12:1243. https://doi.org/10.1038/s41563-023-01649-3.

    Article  CAS  Google Scholar 

  51. Baghdasaryan A, Hobosyan M, Khachatryan H, Niazyan O, Kharatyan S, Sloyan L, Grigoryan Y. The role of chemical activation on the combustion and phase formation laws in the Ni–Al-promoter system. Chem Eng J. 2012;188:210. https://doi.org/10.1016/j.cej.2012.01.137.

    Article  CAS  Google Scholar 

  52. Song J, Guo T, Yao M, Chen J, Ding W, Bei F, Mao Y, Yu Z, Huang J, Zhang X, Yin Q, Wang S. A comparative study of thermal kinetics and combustion performance of Al/CuO, Al/Fe2O3 and Al/MnO2 nanothermites. Vacuum. 2020;176: 109339. https://doi.org/10.1016/j.vacuum.2020.109339.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21805014, 82102635, 52373087, 52003300 and 22109120) and Chongqing Municipal Education Commission (Nos. CXQT20026 and KJQN202201408). Thanks to eceshi (www.eceshi.com) for the SEM, XRD and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Gang Guo, Yi-Huang Chen or Xun Cui.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 17265 KB)

Supplementary file2 (DOC 5678 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XG., Liang, TT., Huang, HS. et al. Programming an efficient technique for designing smart C-doped MIC with dual self-protection for information and high-energy. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02877-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02877-5

Keywords

Navigation