Log in

Improved performance by plasmon resonance in GaAs solar cells: a numerical expectation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The planar heterojunction solar cells based on the GaAs films doped with gold nanoparticles (Au NPs) are investigated by a finite-difference time-domain method. The numerical results show that Au NPs effectively increase the light absorption and short-circuit current (Jsc) of GaAs solar cells, when saving GaAs consumption by reducing film thickness. For the GaAs film of 200 nm in thickness, the presence of Au NPs boosts the device Jsc up to 36.94 mA·cm−2, 1.29 times that of the counterpart device without Au NPs. In addition, one requires the pure GaAs film of 500–600 nm in thickness in order to get the absorption and Jsc comparable to those from the 200-nm-thick GaAs film doped with Au NPs. It is revealed that the improved Jsc upon do** with Au NPs predominantly originates from the increased absorption of GaAs film as the result of the plasmon resonance effect of Au NPs excited by incident photons. Our results demonstrate that do** photon-harvesting layer with Au NPs is an effective strategy to prepare the solar cells with a strong spectral response and a reduced material consumption.

Graphical abstract

摘要

采用时域有限差分方法研究了金纳米粒子 (Au NPs) 掺杂的砷化镓薄膜的**面异质结太阳能电池。数值模拟结果表明, 金纳米粒子掺杂能有效提高砷化镓太阳能电池的光吸收和短路电流 (Jsc), 同时可以减小GaAs薄膜的厚度, 减少材料的使用、节省成本。当GaAs薄膜的厚度为 200 nm时, Au NPs掺杂可以将器件的Jsc提高到 36.94 mA cm−2 (约为不掺杂器件的1.29倍), 而不掺杂Au NPs的GaAs厚度需要达到 500–600 nm, 才能获得与此相当的吸收率与Jsc。掺杂Au NPs可以明显提高器件的Jsc, 主要由于金纳米粒子表面产生等离子共振, 从而增加GaAs薄膜的吸收。因此, 光吸收层中掺杂Au NPs是一种既保证器件有**光谱响应又能减少材料消耗的太阳电池有效制备策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun ZQ, Chen XQ, He YC, Li JJ, Wang JQ, Yan H, Zhang YZ. Toward efficiency limits of crystalline silicon solar cells: recent progress in high-efficiency silicon heterojunction solar cells. Adv Energy Mater. 2022;12(23):2200015. https://doi.org/10.1002/aenm.202200015.

    Article  CAS  Google Scholar 

  2. Wang LQ, Wang WY, Huang JH, Tan RQ, Song WJ, Chen JM. Growth and properties of hydrogenated microcrystalline silicon thin films prepared by magnetron sputtering with different substrate temperatures. Rare Met. 2022;41(3):1037. https://doi.org/10.1007/s12598-015-0510-9.

    Article  CAS  Google Scholar 

  3. Aruna-Devi R, Latha M, Velumani S, Chavez-Carvayar JA. Structural and optical properties of CZTS nanoparticles prepared by a colloidal process. Rare Met. 2021;40(9):260. https://doi.org/10.1007/s12598-019-01288-1.

    Article  CAS  Google Scholar 

  4. Sekiguchi F, Sakamoto M, Nakagawa K, Tahara H, Sato SA, Hirori H, Kanemitsu Y. Enhancing high harmonic generation in GaAs by elliptically polarized light excitation. Phys Rev B. 2023;108(20):205201. https://doi.org/10.1103/PhysRevB.108.205201.

    Article  CAS  Google Scholar 

  5. Liu SN, Qi XY, Zhang Q, Li H, Gu KH, Fang D. Do** properties of GaAs film grown by molecular beam epitaxy. Integr Ferroelectr. 2023;236(1):174. https://doi.org/10.1080/10584587.2023.2194820.

    Article  CAS  Google Scholar 

  6. Sistla VS, Bitra SK, Chella S. Design and optical performance of a single-junction GaAs nanowire-Ge solar cell. Eng Technol Appl Sci Res. 2023;13(5):11655. https://doi.org/10.48084/etasr.6121.

    Article  Google Scholar 

  7. Cheng YZ, Qian YJ, Luo H, Chen F, Cheng ZZ. Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E. 2023;146:115527. https://doi.org/10.1016/j.physe.2022.115527.

    Article  CAS  Google Scholar 

  8. Zumeit A, Dahiya AS, Christou A, Mukherjee R, Dahiya R. Printed GaAs microstructures-based flexible high-performance broadband photodetectors. Adv Mater Technol. 2022;7(12):2200772. https://doi.org/10.1002/admt.202200772.

    Article  CAS  Google Scholar 

  9. Cheng YT, Wang XD, Pei ZL, Chen YN, Lu H, Liu YH. Spontaneously spreading film process to improve the photovoltaic performance of organic solar cells with PHJ structure. Chem Commun. 2023;59(96):14273. https://doi.org/10.1039/d3cc04568d.

    Article  CAS  Google Scholar 

  10. He L, Yi YT, Zhang JG, Xu XB, Tang B, Li GF, Zeng LC, Chen J, Sun TY, Yi Z. A four-narrowband terahertz tunable absorber with perfect absorption and high sensitivity. Mater Res Bull. 2024;170:112572. https://doi.org/10.1016/j.materresbull.2023.112572.

    Article  CAS  Google Scholar 

  11. Zhu YY, Cheng JY, Yi Z, Tang B, Chen J, Zhang JG, Xu XB, Tang CJ, Sun TY. Spectrally selective solar absorber and thermal infrared suppression based on hollow cylindrical microstructures. Opt Commun. 2023;549:129910. https://doi.org/10.1016/j.optcom.2023.129910.

    Article  CAS  Google Scholar 

  12. Zhang HS, Cheng YZ, Chen F. Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik. 2021;229:166300. https://doi.org/10.1016/j.ijleo.2021.166300.

    Article  CAS  Google Scholar 

  13. Cheng YZ, Chen F, Luo H. Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res Lett. 2021;16:1. https://doi.org/10.1186/s11671-021-03474-6.

    Article  CAS  Google Scholar 

  14. Liu T, Liu YH, Ling L, Sheng ZX, Yi Z, Zhou ZG, Yang YG, Tang B, Zeng QD, Sun TY. Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency. Mater Res Bull. 2024;171: 112635. https://doi.org/10.1016/j.materresbull.2023.112635.

    Article  CAS  Google Scholar 

  15. Li ZR, Cheng YZ, Luo H, Chen F, Li XC. Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J Alloy Compd. 2022;925: 166617. https://doi.org/10.1016/j.jallcom.2022.166617.

    Article  CAS  Google Scholar 

  16. Wang JQ, Zheng Z, Zu YF, Wang YF, Liu XY, Zhang SQ, Zhang MJ, Hou JH. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv Mater. 2021;33(39):2102787. https://doi.org/10.1002/adma.202102787.

    Article  CAS  Google Scholar 

  17. Wu JM, Lv YP, Wu H, Zhang HS, Wang F, Zhang J, Wang JZ, Xu XH. Stable GeSe thin-film solar cells employing non-toxic SnO2 as buffer layer. Rare Met. 2022;41(9):2992. https://doi.org/10.1007/s12598-022-02005-1.

    Article  CAS  Google Scholar 

  18. Eskandari M, Shamsi A. Absorption enhancement of ultra-thin film solar cell using Fabry-Perot and plasmonic modes. Phys Scr. 2023;98(10):105521. https://doi.org/10.1088/1402-4896/acf52e.

    Article  Google Scholar 

  19. Wu JM, Lv YP, Wang JZ, Yang L, Wang F, Wu H, Xu XH. Performance improvement of Sb2Se3 thin-film solar cells through ultraviolet ozone treatment. Rare Met. 2022;41(8):2671. https://doi.org/10.1007/s12598-022-01969-4.

    Article  CAS  Google Scholar 

  20. Wang YW, Zhang JC, Liang WK, Yang H, Guan TF, Zhao B, Sun YH, Chi LF, Jiang L. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem. 2022;4(4):1153. https://doi.org/10.31635/ccschem.021.202000732.

    Article  CAS  Google Scholar 

  21. Saravanan S, Dubey RS. Study of ultrathin-film amorphous silicon solar cell performance using photonic and plasmonic nanostructure. Int J Energy Res. 2022;46(3):2558. https://doi.org/10.1002/er.7328.

    Article  CAS  Google Scholar 

  22. Zeng XT, Su N, Wu PH. The structure design and photoelectric properties of wideband high absorption Ge/GaAs/P3HT: PCBM solar cells. Micromachines. 2022;13(3):349. https://doi.org/10.3390/mi13030349.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chaudhry FA, Escandell L, López-Fraguas E, Vergaz R, Sánchez-Pena JM, García-Cámara B. Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles. Sci Rep. 2022;12(1):9240. https://doi.org/10.1038/s41598-022-13418-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uddin S, Hashim MR, Pakhuruddin MZ. Broadband light absorption enhancement in nanoporous black silicon synthesized by aluminium-catalyzed chemical etching. Opt Mater. 2022;134: 113111. https://doi.org/10.1016/j.optmat.2022.113111.

    Article  CAS  Google Scholar 

  25. Zheng RY, Liu YH, Ling L, Sheng ZX, Yi Z, Song Q, Tang B, Zeng QD, Chen J, Sun TY. Ultra wideband tunable terahertz metamaterial absorber based on single-layer graphene strip. Diam Relat Mater. 2024;141:110713. https://doi.org/10.1016/j.diamond.2023.110713.

    Article  CAS  Google Scholar 

  26. Lu WQ, Yi Z, Zhang JG, Xu XB, Tang B, Li GF, Zeng LC, Chen J, Sun TY. A tunable broadband absorber in the terahertz band based on the proportional structure of a single layer of graphene. Diam Relat Mater. 2023;140:110481. https://doi.org/10.1016/j.diamond.2023.110481.

    Article  CAS  Google Scholar 

  27. Lin X, Li YJ, Chen FT, Xu P, Li M. Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv. 2017;7(41):25314. https://doi.org/10.1039/c7ra02198d.

    Article  CAS  Google Scholar 

  28. Zhao F, Lin JC, Lei ZH, Yi Z, Qin F, Zhang JG, Liu L, Wu XW, Yang WX, Wu PH. Realization of 18.97% theoretical efficiency of 0.9 μm thick c-Si/ZnO heterojunction ultrathin-film solar cells via surface plasmon resonance enhancemen. Phys Chem Chem Phys. 2022;24(8):4871. https://doi.org/10.1039/D1CP05119A.

    Article  CAS  PubMed  Google Scholar 

  29. Prashant DV, Agnihotri SK, Samajdar DP. GaAs nanocone array-based hybrid solar cells with excellent light-trap** capabilities and enhanced photogeneration rate. Semicond Sci Technol. 2022;37(9):095002. https://doi.org/10.1088/1361-6641/ac7fb5.

    Article  CAS  Google Scholar 

  30. Chang TH, Wu PH, Chen SH, Chan CH, Lee CC, Chen CC, Su YK. Efficiency enhancement in GaAs solar cells using self-assembled microspheres. Opt Express. 2009;17(8):6519. https://doi.org/10.1364/OE.17.006519.

    Article  CAS  PubMed  Google Scholar 

  31. Lee SM, Kwong A, Jung D, Faucher J, Biswas R, Shen L, Kang D, Lee MJ, Yoon J. High performance ultrathin GaAs solar cells enabled with heterogeneously integrated dielectric periodic nanostructures. ACS Nano. 2015;9(10):10356. https://doi.org/10.1021/acsnano.5b05585.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Chen W, Zheng JC, Chen YS, Yang CF. Wide-Angle polarization-independent ultra-broadband absorber from visible to infrared. Nanomaterials. 2020;10(1):27. https://doi.org/10.3390/nano10010027.

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6(12):4370. https://doi.org/10.1103/PhysRevB.6.4370.

    Article  CAS  Google Scholar 

  34. Palik ED. Handbook of Optical Constants of Solids, vol. 3. Pittsburgh: Academic Press; 1998.1.

  35. Hou WJ, Yang F, Chen ZM, Dong JW, Jiang SJ. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy. Opt Express. 2022;30(3):4424. https://doi.org/10.1364/OE.451411.

    Article  CAS  PubMed  Google Scholar 

  36. Qin F, Chen J, Liu JW, Liu L, Tang CJ, Tang B, Li GF, Zeng LC, Li HL, Yi Z. Design of high efficiency perovskite solar cells based on inorganic and organic undoped double hole layer. Sol Energy. 2023;262:111796. https://doi.org/10.1016/j.solener.2023.111796.

    Article  CAS  Google Scholar 

  37. Yu PQ, Yang H, Chen XF, Yi Z, Yao WT, Chen JF, Yi YG, Wu PH. Ultra-wideband solar absorber based on refractory titanium metal. Renewable Energy. 2020;158:227. https://doi.org/10.1016/j.renene.2020.05.142.

    Article  CAS  Google Scholar 

  38. Qin F, Chen XF, Yi Z, Yao WT, Yang H, Tang YJ, Yi Y, Li HL, Yi YG. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol Energy Mater Sol Cells. 2020;211:110535. https://doi.org/10.1016/j.solmat.2020.110535.

    Article  CAS  Google Scholar 

  39. Li JK, Chen XF, Yi Z, Yang H, Tang YJ, Yi Y, Yao WT, Wang JQ, Yi YG. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater Today Energy. 2020;16:100390. https://doi.org/10.1016/j.mtener.2020.100390.

    Article  Google Scholar 

  40. Wu NQ. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale. 2018;10(6):2679. https://doi.org/10.1039/C7NR08487K.

    Article  CAS  PubMed  Google Scholar 

  41. He L, Smith EA, Natan MJ, Keating CD. The distance-dependence of colloidal Au-amplified surface plasmon resonance. J Phys Chem B. 2004;108(30):10973. https://doi.org/10.1021/jp048536k.

    Article  CAS  Google Scholar 

  42. Long R, Li Y, Song L, **ong YJ. Coupling solar energy into reactions: materials design for surface Plasmon-mediated catalysis. Small. 2015;11(32):3873. https://doi.org/10.1002/smll.201403777.

    Article  CAS  PubMed  Google Scholar 

  43. Lou PY, Wu Q, Zhang C, Wang ZQ, Song YJ. Enhanced magneto-optical Kerr effect via the synergistic effect of surface plasmon resonance and spin–orbit coupling in Au@ Pt nanohybrid layers. J Phys D Appl Phys. 2023;56(37): 375001. https://doi.org/10.1088/1361-6463/acd85e.

    Article  Google Scholar 

  44. Chen ZY, Feng K, Chen ZB, Shen JX, Li HL, Dong JL. The impact of LSP–SPP coupling on the electric field enhancement of a composite SERS substrate consisting of an Au 2D sinusoidal grating and Ag colloidal nanoparticles. Opt Commun. 2022;508:127797. https://doi.org/10.1016/j.optcom.2021.127797.

    Article  CAS  Google Scholar 

  45. Maurer T, Adam PM, Lévêque G. Coupling between plasmonic films and nanostructures: from basics to applications. Nanophotonics. 2015;4(3):363. https://doi.org/10.1515/nanoph-2014-0015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 11974353 and 12374018) and the University Natural Science Foundation of Anhui Province (Nos. 2022AH051578and 2023AH051543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Tai Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wan, ZY., Kuang, JJ. et al. Improved performance by plasmon resonance in GaAs solar cells: a numerical expectation. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02856-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02856-w

Keywords

Navigation