Log in

K do** stabilizes three-dimensional K0.2Na1.3Mn0.5O2-d as high-performance cathode for sodium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 13 July 2024

This article has been updated

Abstract

It is a difficult challenge to simultaneously employ the cationic and anionic redox chemistry in cathode materials for sodium-ion batteries with high energy. Even though layered oxides (classified as two-dimensional oxides) demonstrate excellent promise in the high discharge capacity, their poor oxygen transformation via redox reactions is limited by crystal instability. Therefore, a do** strategy was conceived to tackle this issue and increase redox efficiency. K do** was applied to transform the two-dimensional Na1.3Mn0.7O2 (NMO) to three-dimensional K0.2Na1.3Mn0.5O2 (KNMO), preventing the irreversible phase shift and preserving the crystal structure’s stability while cycling. With this modification treatment, KNMO features manganese and oxygen reactive sites, delivering a promising energy density of 190 mAh·g−1 at 5 mA·g−1 in the 2.0–4.5 V voltage range (vs. 71.4 mAh·g−1 for the pristine NMO). Moreover, it displays improved capacity retention of more than 83.5% after 50 cycles at 50 mA·g−1. The results demonstrated that doped intercalation oxides were promising for redox oxygen transformation in sodium-ion batteries.

Graphical abstract

摘要

同时利用阳离子和阴离子氧化还原反应活性是开发下一代高容量钠离子电池**极材料的一大挑战。尽管层状氧化物(二维氧化物)具有高容量优点,但由于二维晶体的不稳定性,晶格氧的氧化还原反应可逆性差。因此,我们设想了一种掺杂策略来解决这个问题。利用 K 掺杂将二维 Na1.3Mn0.7O2 (NMO)转化为三维 K0.2Na1.3Mn0.5O2-(KNMO),这种方法防止了不可逆相变,并保持了循环时晶体结构的稳定性。通过这种改性处理,KNMO 具有锰和氧反应位点,在 2.0-4.5 V 电压范围内,在 5 mA·g-1 时提供了 190 mAh·g-1 的能量密度(而原始 NMO 为 71.4 mAh·g-1)。此外,在 50 mA· g-1 下循环 50 次后,容量保持率达到了83.5%以上。结果表明,通过掺杂调控结构特性从而稳定晶格氧的氧化还原活性和稳定性策略在开发下一代高性能钠离子电池**极材料中具有重大前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. **ao YY, Liu YH, Liu BB, Qi ZG, Zhang YB, Liu FS, Qin GH. Tuning sodium wettability and pore tortuosity for superior sodium storage. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02351-8.

    Article  Google Scholar 

  2. Gent WE, Lim K, Liang Y, Li Q, Barnes T, Ahn SJ, Stone KH, McIntire M, Hong J, Song JH. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium- rich layered oxides. Nat Commun. 2017;8(1):2091. https://doi.org/10.1038/s41467-017-02041-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Shadike Z, Zhou YN, Chen LL, Wu Q, Yue JL, Zhang N, Yang XQ, Gu L, Liu XS, Shi SQ. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat Commun. 2017;8(1):566. https://doi.org/10.1038/s41467-017-02041-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Assat G, Tarascon J-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy. 2018;3(5):373. https://doi.org/10.1038/nchem.2923.

    Article  CAS  Google Scholar 

  5. Maitra U, House RA, Somerville JW, Tapia-Ruiz N, Lozano JG, Guerrini N, Hao R, Luo K, ** L, Pérez-Osorio MA. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat Chem. 2018;10(3):288. https://doi.org/10.1038/nchem.2923.

    Article  PubMed  CAS  Google Scholar 

  6. Ben Yahia M, Vergnet J, Saubanère M, Doublet ML. Unified picture of anionic redox in Li/Na-ion batteries. Nat Mater. 2019;18(5):496. https://doi.org/10.1038/s41563-019-0318-3.

    Article  PubMed  CAS  Google Scholar 

  7. Gan Q, He H, Zhu Y, Wang Z, Qin N, Gu S, Li Z, Luo W, Lu Z. Defect-assisted selective surface phosphorus do** to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano. 2019;13(8):9247. https://doi.org/10.1021/acsnano.9b03766.

    Article  PubMed  CAS  Google Scholar 

  8. Zhai J, Ji H, Ji W, Wang R, Huang Z, Yang T, Wang C, Zhang T, Chen Z, Zhao W. Suppressing the irreversible phase transition from P2 to O2 in sodium-layered cathode via integrating P2-and O3-type structures. Mater Today Energy. 2022;29:101106. https://doi.org/10.1016/j.mtener.2022.101106.

    Article  CAS  Google Scholar 

  9. Wang T, Ren GX, Shadike Z, Yue JL, Cao MH, Zhang JN, Chen MW, Yang XQ, Bak SM, Northrup P. Anionic redox reaction in layered NaCr2/3Ti1/3S2 through electron holes formation and dimerization of S-S. Nat Commun. 2019;10(1):4458. https://doi.org/10.1038/s41467-019-12310-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Guo YD, Jiang JC, **e J, Wang X, Li JZ, Wang D-H, Zhou A-J. Enhanced performance of core–shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+–Cs+ ion exchange for sodium-ion batteries. Rare Met. 2022;41(11):3740. https://doi.org/10.1007/s12598-022-02068-0.

    Article  CAS  Google Scholar 

  11. De la Llave E, Talaie E, Levi E, Nayak PK, Dixit M, Rao PT, Hartmann P, Chesneau F, Major DT, Greenstein M. Improving energy density and structural stability of manganese oxide cathodes for Na-ion batteries by structural lithium substitution. Chem Mater. 2016;28(24):9064. https://doi.org/10.1021/acs.chemmater.6b04078.

    Article  CAS  Google Scholar 

  12. Ouyang B, Chen T, Chen X, Fan X, Wang J, Liu W, Lu Z, Liu K. Construction of Co/Ni-Free P2-layered metal oxide cathode with high reversible oxygen redox for sodium ion batteries. Chem Eng J. 2023;452:138912. https://doi.org/10.1016/j.cej.2022.138912.

    Article  CAS  Google Scholar 

  13. Ba DL, Zhu WH, Li YY, Liu JP. Synergistically enhancing cycle ability and rate performance of sodium titanate nanowire anode via hydrogenation and carbon coating for advanced sodium ion batteries. Rare Met. 2022;41(12):4075. https://doi.org/10.1007/s12598-022-02082-2.

    Article  CAS  Google Scholar 

  14. Ding Q, Zheng W, Zhao A, Zhao Y, Chen K, Zhou X, Zhang H, Li Q, Ai X, Yang H, Fang Y, Cao Y. W-do** induced efficient tunnel-to-layered structure transformation of Na0.44Mn1-xWxO2: phase evolution, sodium-storage properties and moisture stability. Adv Energy Mater. 2023;13(21):2203802. https://doi.org/10.1002/aenm.202203802.

    Article  CAS  Google Scholar 

  15. Lai Y, **e H, Li P, Li B, Zhao A, Luo L, Jiang Z, Fang Y, Chen S, Ai X, **a D, Cao Y. Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv Mater. 2022;34(47):2206039. https://doi.org/10.1002/adma.202206039.

    Article  CAS  Google Scholar 

  16. Ma C, Alvarado J, Xu J, Clément RJ, Kodur M, Tong W, Grey CP, Meng YS. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J Am Chem Soc. 2017;139(13):4835. https://doi.org/10.1021/jacs.7b00164.

    Article  PubMed  CAS  Google Scholar 

  17. Wang Q, Yang W, Kang F, Li B. Na2Mn3+0.3Mn4+2.7O6.85: a cathode with simultaneous cationic and anionic redox in Na-ion battery. Energy Storage Mater. 2018;14:361. https://doi.org/10.1016/j.ensm.2018.06.003.

    Article  Google Scholar 

  18. Zheng W, Liu Q, Wang Z, Wu Z, Gu S, Cao L, Zhang K, Fransaer J, Lu Z. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Mater. 2020;28:300. https://doi.org/10.1016/j.ensm.2020.03.016.

    Article  Google Scholar 

  19. Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 1981;3:165. https://doi.org/10.1016/0167-2738(81)90076-X.

    Article  Google Scholar 

  20. Huang X, Li D, Huang H, Jiang X, Yang Z, Zhang W. Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Res. 2021;14(10):3531. https://doi.org/10.1007/s12274-021-3715-2.

    Article  CAS  Google Scholar 

  21. Peng JM, Chen ZQ, Li Y, Hu S-J, Pan QC, Zheng FH, Wang HQ, Li QY. Conducting network interface modulated rate performance in LiFePO4/C cathode materials. Rare Met. 2022;41(3):951. https://doi.org/10.1007/s12598-021-01718-z.

    Article  CAS  Google Scholar 

  22. Yao L, Zou P, Wang C, Jiang J, Ma L, Tan S, Beyer KA, Xu F, Hu E, **n HL. High-entropy and superstructure-stabilized layered oxide cathodes for sodium-ion batteries. Adv Energy Mater. 2022;12(41):2201989. https://doi.org/10.1002/aenm.202201989.

    Article  CAS  Google Scholar 

  23. Zhang JL, Li CL, Wang WH, Yu DYW. Facile synthesis of hollow Cu3P for sodium-ion batteries anode. Rare Met. 2021;40(12):3460. https://doi.org/10.1007/s12598-021-01718-z.

    Article  CAS  Google Scholar 

  24. Jiang N, Liu Q, Wang J, Yang W, Ma W, Zhang L, Peng Z, Zhang Z. Tailoring P2/P3 biphases of layered NaxMnO2 by co substitution for high-performance sodium-ion battery. Small. 2021;17(7):2007103. https://doi.org/10.1002/smll.202007103.

    Article  CAS  Google Scholar 

  25. Yang L, Li X, Liu J, ** stabilized high-performance P2–Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J Am Chem Soc. 2019;141(16):6680. https://doi.org/10.1021/jacs.9b01855.

    Article  PubMed  CAS  Google Scholar 

  26. Wang F, Peng B, Zeng S, Zhao L, Zhang X, Wan G, Zhang H, Zhang G. Activating oxygen redox in layered Nax-MnO2 to suppress intrinsic deficient behavior and enable phase-transition-free sodium ion cathode. Adv Funct Mater. 2022;32(35):2202665. https://doi.org/10.1002/adfm.202202665.

    Article  CAS  Google Scholar 

  27. Sun HB, Fu HY, Huang YY, Zheng XY, Huang Y, Lin R, Luo W. Design of a 3D mixed conducting scaffold toward stable metallic sodium anodes. Rare Met. 2022;41(10):3336. https://doi.org/10.1007/s12598-022-02048-4.

    Article  CAS  Google Scholar 

  28. Goodenough JB. Na3MnZr (PO4)3: a high-voltage cathode for sodium batteries. J Am Chem Soc. 2018;140(51):18192. https://doi.org/10.1021/jacs.8b11388.

    Article  PubMed  CAS  Google Scholar 

  29. Fan K, Li J, Xu Y, Fu C, Chen Y, Zhang C, Zhang G, Ma J, Zhai T, Wang C. Single crystals of a highly conductive three-dimensional conjugated coordination polymer. J Am Chem Soc. 2023;145(23):12682–90. https://doi.org/10.1021/jacs.3c02378.

    Article  PubMed  CAS  Google Scholar 

  30. Wu Z-L, **e H, Li Y, Zhang F, Wang Z, Zheng W, Yang M, Cao Y, Lu Z. Insights into the chemical and structural evolution of Li-rich layered oxide cathode materials. Inorg Chem Front. 2021;8(1):127. https://doi.org/10.1039/D0QI01021A.

    Article  CAS  Google Scholar 

  31. Guo YD, Jiang JC, **e J, Wang X, Li JZ, Wang DH, Zhou AJ. Enhanced performance of core–shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+ –Cs+ ion exchange for sodium-ion batteries. Rare Met. 2022;41(11):3740. https://doi.org/10.1007/s12598-022-02068-0.

    Article  CAS  Google Scholar 

  32. Wrobel F, Shin H, Sterbinsky GE, Hsiao HW, Zuo JM, Ganesh P, Krogel JT, Benali A, Kent PR, Heinonen O. Local structure of potassium doped nickel oxide: a combined experimental-theoretical study. Phys Rev Mater. 2019;3(11):115003. https://doi.org/10.1103/PhysRevMaterials.3.115003.

    Article  CAS  Google Scholar 

  33. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY. Shell-isolated nanoparticle enhanced Raman spectroscopy. Nature. 2010;464(7287):392. https://doi.org/10.1038/nature08907.

    Article  PubMed  CAS  Google Scholar 

  34. Qiao Y, Ye S. Spectroscopic investigation for oxygen reduction and evolution reactions with tetrathiafulvalene as a redox mediator in Li–O2 battery. J Phys Chem C. 2016;120(29):15830. https://doi.org/10.1021/acs.jpcc.5b11692.

    Article  CAS  Google Scholar 

  35. Li X, Qiao Y, Guo S, Xu Z, Zhu H, Zhang X, Yuan Y, He P, Ishida M, Zhou H. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv Mater. 2018;30(14):1705197. https://doi.org/10.1002/adma.201705197.

    Article  CAS  Google Scholar 

  36. Huang H, Li Z, Gu S, Bian J, Li Y, Chen J, Liao K, Gan Q, Wang Y, Wu S. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv Energy Mater. 2021;11(44):2101864. https://doi.org/10.1002/aenm.202101864.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Startup Fund for Shenzhen High-Caliber Personnel of SZPT (No. 6021310029K) and Research Projects of Department of Education of Guangdong Province (No. 2023KTSCX319).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Min Yang, Hua Cheng or Zhou-Guang Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12669 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, JH., Zhu, YH., Yang, WM. et al. K do** stabilizes three-dimensional K0.2Na1.3Mn0.5O2-d as high-performance cathode for sodium-ion batteries. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02814-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02814-6

Keywords

Navigation