Log in

A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective photogeneration of hydrogen

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The design and synthesis of catalysts for the oxidation desulfurization and production of hydrogen are extremely important for solving environmental pollution and energy shortage. Herein, a novel bifunctional [α-Mo8O26]4−/[β-Mo8O26]4−-based Cu-viologen complex H4[Cu2ICl2(Hbcbpy)4][α-Mo8O26][β-Mo8O26]·H2O (BHU-2, Hbcbpy = 1-(4-carboxybenzyl)-4,4’-bipyridinium) was synthesized and characterized by single-crystal X-ray diffraction (XRD), infrared radiation spectra, powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) spectra. The structural characteristic of BHU-2 is the presence of two types of octamolybdate clusters [α-Mo8O26]4−/[β-Mo8O26]4− and a new binuclear CuI-Hbcbpy complex linked by Cl-bridges [Cu2ICl2(Hbcbpy)4]4+. BHU-2 as a heterogeneous catalyst exhibits excellent activities to the oxidation desulfurization and photocatalytic hydrogen production. At room temperature, BHU-2 can catalyze 96% conversion of methyl phenyl sulfide with 98% selectivity, and the process obeys the pseudo-first-order reaction kinetic with the half-life of 9.6 min. The notorious 2-chloroethyl ethyl sulfide can achieve 99% conversion with 98% selectivity within only 1 min at the presence of BHU-2, and the turnover frequency (TOF) is up to 7400 h−1. BHU-2 also exhibits high catalytic activity for the oxidation of other aromatic and aliphatic thioethers within short time at room temperature. Furthermore, BHU-2 shows a high catalytic activity for visible-light-driven hydrogen evolution with an H2 evolution rate of 1677.85 µmol·g−1·h−1 within 10 h. Moreover, the catalytic activities do not decrease evidently after three cycles, revealing the prominent structural stability and recyclability.

Graphical abstract

摘要

氧化脱硫和产氢催化剂的设计和合成对于解决环境污染和能源短缺问题具有极其重要的意义。本文合成了一种新型的双功能多酸基铜–紫精配合物H4[Cu2ICl2(Hbcbpy)4][α-Mo8O26][β-Mo8O26]·H2O (BHU-2, Hbcbpy = 1-(4-羧苄基)-4,4’-联吡啶), 并通过单晶X-射线衍射、IR、PXRD和XPS光谱等进行了表征。BHU-2的结构特征是存在两种类型的{Mo8}簇[α-Mo8O26]4−/[β-Mo8O26]4−和一种由Cl-桥连接的双核CuI-Hbcbpy配合物 [Cu2ICl2(Hbcbpy)4]4+BHU-2作为一种非均相催化剂, 对氧化脱硫 (ODS) 和光催化产氢具有良好的活性。在室温下, BHU-2催化氧化甲基苯基硫醚 (MPS) 的转化率为96%, 选择性为98%, 该过程遵循一级反应动力学, 半衰期为9.6 min。在BHU-2存在下, 2-氯乙基乙基硫醚 (CEES) 在1 min内转化率可达到99%, 选择性为98%, TOF高达7400 h−1BHU-2在室温及短时间内对其他芳香族和脂肪族硫醚的氧化也具有较高的催化活性。此外, BHU-2对可见光驱动的产氢具有较高的催化活性, 在10 h内产氢速率为1677.85 µmol·g−1·h−1。此外, 三次循环后催化活性没有明显下降, 表明结构具有较好的稳定性和可回收性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang P, Jiang L, Zou X, Tan H, Zhang P, Li J, Liu B, Zhu G. Confining polyoxometalate clusters into porous aromatic framework materials for catalytic desulfurization of dibenzothio-phene. ACS Appl Mater Interfaces. 2020;12(23):25910. https://doi.org/10.1021/acsami.0c05392.

    Article  CAS  Google Scholar 

  2. Sun JP, Zhao Z, Li J, Li ZZ, Meng XC. Recent advances in electrocatalytic seawater splitting. Rare Met. 2023;42(3):751. https://doi.org/10.1007/s12598-022-02168-x.

    Article  CAS  Google Scholar 

  3. Zhang Z, Wang YL, Liu Y, Huang SL, Yang GY. Three ring-shaped Zr(IV)-substituted silicotungstates: syntheses, structures and their properties. Nanoscale. 2020;12(35):18333. https://doi.org/10.1039/D0NR02945A.

    Article  CAS  Google Scholar 

  4. Rajendran A, Cui TY, Fan HX, Yang ZF, Feng J, Li WY. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J Mater Chem A. 2020;8(5):2246. https://doi.org/10.1039/C9TA12555H.

    Article  CAS  Google Scholar 

  5. Zhang M, Li HJ, Zhang JH, Lv HJ, Yang GY. Research, advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin J Catal. 2021;42(6):855. https://doi.org/10.1016/S1872-2067(20)63714-7.

    Article  Google Scholar 

  6. Hou HL, Zeng XK, Zhang XW. Production of hydrogen peroxide by photocatalytic processes Angew. Chem Int Ed. 2020;59(40):17356. https://doi.org/10.1002/anie.201911609.

    Article  CAS  Google Scholar 

  7. Sun LJ, Su HW, Xu DF, Wang LL, Tang H, Liu QQ. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022;41(6):2063. https://doi.org/10.1007/s12598-021-01936-5.

    Article  CAS  Google Scholar 

  8. Qiu JY, Feng HZ, Chen ZH, Ruan SH, Chen YP, Xu TT, Su JY, Ha EN, Wang LY. Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met. 2022;41(6):2074. https://doi.org/10.1007/s12598-021-01929-4.

  9. Liu JX, Zhang XB, Li YL, Huang SL, Yang GY. Polyoxometalate functionalized architectures. Coord Chem Rev. 2020;414(1):213260. https://doi.org/10.1016/j.ccr.2020.213260.

    Article  CAS  Google Scholar 

  10. Liu JC, Wang JF, Han Q, Shangguan P, Liu LL, Chen LJ, Zhao JW, Streb C, Song YF. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew Chem Int Ed. 2021;60(20):11153. https://doi.org/10.1002/anie.202017318.

    Article  CAS  Google Scholar 

  11. Gao ZX, Sun S, Li B, Cheng DM, Wang YH, Zang HY, Li YG. Design and synthesis of phosphomolybdate coordination compounds based on {P4Mo6} structural units and their proton conductivity. Tungsten. 2023;5(1):67. https://doi.org/10.1007/s42864-021-00122-5.

    Article  CAS  Google Scholar 

  12. Gumerova NI, Rompel A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat Rev Chem. 2018;2:0112. https://doi.org/10.1038/s41570-018-0112.

    Article  CAS  Google Scholar 

  13. Tian Y, Chang ZH, Wang XL, Lin HY, Zhang YC, Liu QQ, Chen YZ. Pseudocapacitance improvement of polymolybdates-based metal-organic complexes via modification with hydrogen molybdenum bronze by electrochemical treatment. Chem Eng J. 2022;428(15):132380. https://doi.org/10.1016/j.cej.2021.132380.

    Article  CAS  Google Scholar 

  14. Liu XD, Xu N, Liu XH, Guo YY, Wang XL. Self-assembly of a novel multicomponent polyoxometalate-based tetrahedral supercluster with high catalytic activity for thioether oxidation. Chem Commun. 2022;58(87):12236. https://doi.org/10.1039/D2CC02748H.

    Article  CAS  Google Scholar 

  15. Li XX, Zhao D, Zheng ST. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord Chem Rev. 2019;397(15):220. https://doi.org/10.1016/j.ccr.2019.07.005.

    Article  CAS  Google Scholar 

  16. Zhang Y, Wang X, Wang Y, Xu N. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates. 2022;1(1):9140004. https://doi.org/10.26599/POM.2022.9140004.

  17. Cui ZW, Wu JF, Xu YN, Wu TT, Li HR, Li J, Kang LX, Cai YH, Li JZ, Tian D. In-situ growth of polyoxometalate-based metal-organic frameworks on wood as a promising dual-function filter for effective hazardous dye and iodine capture. Chem. Eng. J. 2023;451(1):138371. https://doi.org/10.1016/j.cej.2022.138371.

  18. Liu YW, Wang BX, Fu Q, Liu W, Wang Y, Gu L, Wang DS, Li YD. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew Chem Int Ed. 2021;60(41):22522. https://doi.org/10.1002/anie.202109538.

    Article  CAS  Google Scholar 

  19. Li K, Liu YF, Lin XL, Yang GP. Copper-containing polyoxometalates-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg Chem. 2022;61(18):6934. https://doi.org/10.1021/acs.inorgchem.2c00287.

    Article  CAS  Google Scholar 

  20. Jiang J, Liu LL, Liu GP, Wang D, Zhang Y, Chen LJ, Zhao JW. An organic–inorganic hybrid cerium–encapsulated selenotungstate including three building blocks and its electrochemical detection to dopamine and paracetamol. Inorg Chem. 2020;59(20):15355. https://doi.org/10.1021/acs.inorgchem.0c02318.

    Article  CAS  Google Scholar 

  21. Wang HN, Zhang M, Zhang AM, Shen FC, Wang XK, Sun SN, Chen YJ, Lan YQ. Polyoxometalate-based metal-organic frameworks with conductive polypyrrole for supercapacitors. ACS Appl Mater Interfaces. 2018;10(38):32265. https://doi.org/10.1021/acsami.8b12194.

    Article  CAS  Google Scholar 

  22. Liu ZY, Lin YD, Yu H, Chen HN, Guo ZW, Li XX, Zheng ST. Recent advances in polyoxoniobate-catalyzed reactions. Tungsten. 2022;4(2):81. https://doi.org/10.1007/s42864-021-00134-1.

    Article  CAS  Google Scholar 

  23. Shen QB, García CJG, Sun WL, Lai XY, Pang HJ, Ma HY. Improving the photocatalytic H2 evolution activity of Keggin polyoxometalates anchoring copper-azole complexes. Green Chem. 2021;23(8):3104. https://doi.org/10.1039/D1GC00692D.

    Article  CAS  Google Scholar 

  24. Yu MY, Yang J, Guo TT, Ma JF. Efficient catalytic oxidative desulfurization toward thioether and sulfur mustard stimulant by polyoxomolybdate−resorcin[4]arene-based metal-organic materials. Inorg Chem. 2020;59(7):4985. https://doi.org/10.1021/acs.inorgchem.0c00225.

    Article  CAS  Google Scholar 

  25. Chen YH, Chang SZ, An HY, Li YQ, Zhu QS, Luo HY, Huang YH. Two polymorphic polyoxometalate-based metal–organic frameworks for the efficient synthesis of functionalized sulfoxides and detoxification of mustard gas simulants. ACS Sustainable Chem Eng. 2021;9(46):15683. https://doi.org/10.1021/acssuschemeng.1c06433.

    Article  CAS  Google Scholar 

  26. Wang XL, Zhang JY, Chang ZH, Zhang Z, Wang X, Lin HY, Cui ZW. α−γ type [Mo8O26]4−-containing metal−organic complex possessing efficient catalytic activity toward the oxidation of thioether derivatives. Inorg Chem. 2021;60(5):3331. https://doi.org/10.1021/acs.inorgchem.0c03738.

    Article  CAS  Google Scholar 

  27. Yang L, Zhang Z, Zhang CN, Li S, Liu GC, Wang XL. An excellent multifunctional photocatalyst with a polyoxometalate–viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg Chem Front. 2022;9(18):4824. https://doi.org/10.1039/D2QI00838F.

    Article  CAS  Google Scholar 

  28. Zhang CJ, Ma S, Cui GN, Dong LM, Sui FY, Liu X, Pang HJ. Directed synthesis of a new decamolybdate-encapsulated nanocage framework by mixed-ligands for light-driven hydrogen generation. Clean Technol Environ Policy. 2022;24:2975. https://doi.org/10.1007/s10098-022-02351-9.

    Article  CAS  Google Scholar 

  29. Zhao XX, Zhang SW, Yan JQ, Li LD, Wu GJ, Shi W, Yang GM, Guan NJ, Cheng P. Polyoxometalate-based metal-organic frameworks as visible-light-induced photocatalysts. Inorg Chem. 2018;57(9):5030. https://doi.org/10.1021/acs.inorgchem.8b00098.

    Article  CAS  Google Scholar 

  30. Sun YQ, Zhang J, Ju ZF, Yang GY. Two-dimensional noninterpenetrating transition metal coordination polymers with large honeycomb-like hexagonal cavities constructed from a carboxybenzyl viologen ligand. Cryst Growth Des. 2005;5(5):1939. https://doi.org/10.1021/cg050249y.

    Article  CAS  Google Scholar 

  31. Ma PT, Hu F, Wang JP, Niu JY. Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications. Coord Chem Rev. 2019;378:281. https://doi.org/10.1016/j.ccr.2018.02.010.

    Article  CAS  Google Scholar 

  32. Shi ZL, Li J, Han QX, Shi XY, Si C, Niu GQ, Ma PT, Li MX. Polyoxometalate-supported aminocatalyst for the photocatalytic direct synthesis of imines from alkenes and amines. Inorg Chem. 2019;58(19):12529. https://doi.org/10.1021/acs.inorgchem.9b02056.

    Article  CAS  Google Scholar 

  33. He JC, Han QX, Li J, Shi ZL, Shi XY, Niu JY. Ternary supramolecular system for photocatalytic oxidation with air by consecutive photo-induced electron transfer processes. J Catal. 2019;376:161. https://doi.org/10.1016/j.jcat.2019.06.040.

    Article  CAS  Google Scholar 

  34. Li J, He JC, Si C, Li MX, Han QX, Wang ZL, Zhao JW. Special-selective C-H oxidation of toluene to benzaldehyde by a hybrid polyoxometalate photocatalyst including a rare [P6W48Fe6O180]30– anion. J Catal. 2020;392:244. https://doi.org/10.1016/j.jcat.2020.10.013.

    Article  CAS  Google Scholar 

  35. Yao QX, Ju ZF, Li W, Wu W, Zheng ST, Zhang J. Unprecedented 3D polycatenation based on ribbons of rings found in two metallosupramolecular polymers whose open frameworks show reversible collapse upon de- and rehydration. CrystEngComm. 2008;10:1299. https://doi.org/10.1039/B810523P.

    Article  CAS  Google Scholar 

  36. Thorp HH. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. Inorg Chem. 1992;31(9):1585. https://doi.org/10.1021/ic00035a012.

    Article  CAS  Google Scholar 

  37. Zhang Z, Li HL, Wang YL, Yang GY. Syntheses, structures, and electrochemical properties of three new acetate-functionalized Zirconium-substituted Germanotungstates: from dimer to tetramer. Inorg Chem. 2019;58(4):2372. https://doi.org/10.1021/acs.inorgchem.8b02805.

    Article  CAS  Google Scholar 

  38. Li DD, Xu QF, Li YG, Qiu YT, Ma PT, Niu JY, Wang JP. A stable polyoxometalate-based metal–organic framework as highly efficient heterogeneous catalyst for oxidation of alcohols. Inorg Chem. 2019;58(8):4945. https://doi.org/10.1021/acs.inorgchem.8b03589.

    Article  CAS  Google Scholar 

  39. Dong BX, Xu Q. Investigation of flexible organic ligands in the molybdate system: delicate influence of a peripheral cluster environment on the isopolymolybdate frameworks. Inorg Chem. 2009;48(13):5861. https://doi.org/10.1021/ic900128t.

    Article  CAS  Google Scholar 

  40. Fu H, Lu Y, Wang ZL, Liang C, Zhang ZM, Wang EB. Three hybrid networks based on octamolybdate: ionothermal synthesis, structure and photocatalytic properties. Dalton Trans. 2012;41(14):4084. https://doi.org/10.1039/C2DT11912A.

    Article  CAS  Google Scholar 

  41. Zhou WL, Liu P, Zheng YP, Liu XK, Zhang Y, Yuan G, Peng J. Four new dual-functional electro-catalysts formed from small molybdenum clusters and Cu-pyridyl complexes. Dalton Trans. 2019;48(43):16350. https://doi.org/10.1039/C9DT03560E.

    Article  CAS  Google Scholar 

  42. Zhang CD, Liu SX, Sun CY, Ma FJ, Su ZM. Assembly of organic-inorganic hybrid materials based on Dawson-type polyoxometalate and multinuclear copper-Phen complexes with unique magnetic properties. Cryst Growth Des. 2009;9(8):3655. https://doi.org/10.1021/cg900391q.

    Article  CAS  Google Scholar 

  43. Xu X, Yang ML, Lu QH, Yu S, Ma SF, Tian AX, Ying J. Three photochromic materials based on POMs and viologens for UV probing, visual detection of metal ions and amine detection. CrystEngComm. 2022;24(43):7677. https://doi.org/10.1039/D2CE01244H.

    Article  CAS  Google Scholar 

  44. Hao YJ, Papazyan EK, Ba Y, Liu YY. Mechanism-guided design of metal−organic framework composites for selective photooxidation of a mustard gas simulant under solvent-free conditions. ACS Catal. 2022;12(1):363. https://doi.org/10.1021/acscatal.1c04755.

    Article  CAS  Google Scholar 

  45. Wang SS, Yang GY. Recent advances in polyoxometalate-catalyzed reactions. Chem Rev. 2015;115(11):4893. https://doi.org/10.1021/cr500390v.

    Article  CAS  Google Scholar 

  46. Yu MY, Guo TT, Shi XC, Yang J, Xu XX, Ma JF, Yu ZT. Polyoxometalate-bridged Cu(I)- and Ag(I)-thiacalix[4]arene dimers for heterogeneous catalytic oxidative desulfurization and azide–alkyne “Click” reaction. Inorg Chem. 2019;58(16):11010. https://doi.org/10.1021/acs.inorgchem.9b01557.

    Article  CAS  Google Scholar 

  47. Li XY, Pi YH, **a QB, Li Z, **ao J. TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB. Appl. Catal., B, 2016;191:192. https://doi.org/10.1016/j.apcatb.2016.03.034.

  48. Zhai YP, Yu JL, Zhang LJ, Zhou YS, Zhong YX, Yang Y, Wang YA. A bifunctional composite H5PV2Mo10O40@MOF-808(Ce): Preparation, characterization, and performance in the decontamination of chemical warfare agent surrogates CEES and DMNP. Microporous Mesoporous Mater. 2021;322:111163. https://doi.org/10.1016/j.micromeso.2021.111163.

  49. Chen YH, An HY, Chang SZ, Li YQ, Zhu QS, Luo HY, Huang YH. A POM-based porous supramolecular framework for efficient sulfide–sulfoxide transformations with a low molar O/S ratio. Inorg Chem Front. 2022;9(13):3282. https://doi.org/10.1039/D2QI00525E.

    Article  CAS  Google Scholar 

  50. Dong J, Hu JF, Chi YN, Lin ZG, Zou B, Yang S, Hill CL, Hu CW. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew Chem Int Ed. 2017;56(16):4473. https://doi.org/10.1002/anie.201610955.

    Article  CAS  Google Scholar 

  51. Son JH, Park DH, Keszler DA, Casey WH. Acid-stable peroxoniobophosphate clusters to make patterned films. Chem Eur J. 2015;21(18):6727. https://doi.org/10.1002/chem.201500684.

    Article  CAS  Google Scholar 

  52. Zhen N, Dong J, Lin ZG, Li XX, Chi YN, Hu CW. Self-assembly of polyoxovanadate-capped polyoxoniobates and their catalytic decontamination of sulfur mustard simulants. Chem Commun. 2020;56(90):13967. https://doi.org/10.1039/D0CC06277D.

    Article  CAS  Google Scholar 

  53. Chang SZ, Chen YH, An HY, Zhu QS, Luo HY, Xu TQ. Highly efficient synthesis of p-benzoquinones catalyzed by robust two-dimensional POM-based coordination polymers. ACS Appl Mater Interfaces. 2021;13(18):21261. https://doi.org/10.1021/acsami.1c02558.

    Article  CAS  Google Scholar 

  54. Grandcolas M, Cottineau T, Louvet A, Keller N, Keller V. Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl. Catal., B, 2013;138–139(17):128. https://doi.org/10.1016/j.apcatb.2013.02.041.

  55. Chang SZ, An HY, Chen YH, Zhu QS, Luo HY, Huang YH. Highly efficient supramolecular catalysts assembled by Dawson-type POMs and metal-organic complexes for the synergistic catalytic synthesis of p-benzoquinones. ACS Sustainable Chem Eng. 2022;10(14):4728. https://doi.org/10.1021/acssuschemeng.2c00351.

    Article  CAS  Google Scholar 

  56. Li X, Yang XY, Sha JQ, Han T, Du CJ, Sun YJ, Lan YQ. POMOFs/SWNTs nanocomposite with prominent peroxidase-mimicking activity for L-cysteine ‘on-off switch’ colorimetric biosensing. ACS Appl Mater Interfaces. 2019;11(18):16896. https://doi.org/10.1021/acsami.9b00872.

    Article  CAS  Google Scholar 

  57. Qin L, Wang RJ, **n X, Zhang M, Liu TF, Lv HJ, Yang GY. A dual-functional supramolecular assembly for enhanced photocatalytic hydrogen evolution. Appl. Catal., B, 2022;312(5):121386. https://doi.org/10.1016/j.apcatb.2022.121386.

  58. Shi DY, Zheng R, Liu CS, Chen DM, Zhao JW, Du M. Dual-functionalized mixed Keggin- and Lindqvist-type Cu24-based POM@MOF for visible-light-driven H2 and O2 evolution. Inorg Chem. 2019;58(11):7229. https://doi.org/10.1021/acs.inorgchem.9b00206.

    Article  CAS  Google Scholar 

  59. Liao MX, Wang TM, Zuo T, Meng LY, Yang MX, Chen YX, Hu T, **e YM. Design and solvothermal synthesis of polyoxometalate-based Cu(II)-pyrazolate photocatalytic compounds for solar-light-driven hydrogen evolution. Inorg Chem. 2021;60(17):13136. https://doi.org/10.1021/acs.inorgchem.1c01540.

    Article  CAS  Google Scholar 

  60. Sreethawong T, Junbua C, Chavadej S. Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst. J Power Sources. 2009;190(2):513. https://doi.org/10.1016/j.jpowsour.2009.01.054.

    Article  CAS  Google Scholar 

  61. Schönweiz S, Rommel SA, Kübel J, Micheel M, Dietzek B, Rau S, Streb C. Covalent photosensitizer-polyoxometalate-catalyst dyads for visible-light-driven hydrogen evolution. Chem Eur J. 2016;22(34):12002. https://doi.org/10.1002/chem.201602850.

    Article  CAS  Google Scholar 

  62. Wang ZW, Zhao Q, Chen CA, Sun JJ, Lv HJ, Yang GY. Chiral Ni6PW9 cluster-organic framework: synthesis, structure, and properties. Inorg Chem. 2022;61(19):7477. https://doi.org/10.1021/acs.inorgchem.2c00575.

    Article  CAS  Google Scholar 

  63. Shen QB, Gómez-García CJ, Sun WL, Lai XY, Pang HJ, Ma HY. Improving the photocatalytic H2 evolution activity of Keggin polyoxometalates anchoring copper-azole complexes. Green Chem. 2021;23(8):3104. https://doi.org/10.1039/D1GC00692D.

    Article  CAS  Google Scholar 

  64. Lv HJ, Song J, Zhu HM, Geletii YV, Bacsa J, Zhao CC, Lian TQ, Musaev DG, Hill CL. Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst. J Catal. 2013;307:48. https://doi.org/10.1016/j.jcat.2013.06.028.

    Article  CAS  Google Scholar 

  65. Cui TT, Qin L, Fu FY, **n X, Li HJ, Fang XK, Lv HJ. Pentadecanuclear Fe-containing polyoxometalate catalyst for visible-light-driven generation of hydrogen. Inorg Chem. 2021;60(6):4124. https://doi.org/10.1021/acs.inorgchem.1c00267.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22271021, 21901018 and 21971024), the Natural Science Foundation of Liaoning Province (No. 2022-MS-373) and Liaoning Revitalization Talents Program (No. XLYC1902011)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **u-Li Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4293 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, Z., Zhang, CN. et al. A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective photogeneration of hydrogen. Rare Met. 43, 236–246 (2024). https://doi.org/10.1007/s12598-023-02435-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02435-5

Keywords

Navigation