Log in

Carbon honeycomb structure with high axial thermal transport and strong robustness

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder, which can greatly limit their applications in heat dissipation. In this work, we unveil that the carbon honeycomb structures which have high in-plane thermal conductivity simultaneously possess high axial thermal conductivity. Based on non-equilibrium molecular dynamics simulations, we find that the intrinsic axial thermal conductivity of carbon honeycomb structure reaches 746 W·m−1·K−1 at room temperature, comparable to that of good heat dissipation materials such as hexagonal boron nitride. By comparing the phonon transmission spectrum between carbon honeycombs and few layer graphene, the physical mechanism responsible for the high axial thermal conductivity of carbon honeycombs is discussed. More importantly, our simulation results further demonstrate that the high axial thermal conductivity of carbon honeycomb structure is robust to the structural disorder, which is a common issue during the mass production of the carbon honeycomb structure. Our study suggests that the carbon honeycomb structure has unique advantages to serve as the thermal management material for practical applications.

Graphical abstract

摘要

低维纳米材料热输运性能的各向异性及其对结构无序度的高度敏感性极大限制了其在热耗散方面的应用. 我们的工作介绍了一种新型的石墨烯基三维复合材料——碳蜂巢结构.基于非**衡态分子动力学模拟, 我们发现碳蜂巢结构具有超高的轴向热输运性能, 其本征轴向热导率高达746 W·m−1·K−1这与六方氮化硼等二维材料优异的导热能力相当. 通过比较碳蜂巢结构和少层石墨烯中跨**面方向的声子透射谱, 我们揭示了碳蜂巢结构超高轴向热导率的起源. 更重要的是, 在实际材料制备过程中不可避免会引入结构的无序, 通常这会对体系的热输运性能产生极大的阻碍. 但我们的模拟结果表明, 碳蜂巢结构轴向热导率对面内结构无序度具有很**的鲁棒性, 这对于石墨烯基复合材料的实际应用具有重要意义. 因此, 这种新型的三维石墨烯基复合材料超高的轴向热输运性能和鲁棒性优势, 将为改善纳米材料多维度的热输运性能以及实际散热材料的应用发挥巨大价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen J, Xu X, Zhou J, Li B. Interfacial thermal resistance: past, present, and future. Rev Mod Phys. 2022;94(2):025002. https://doi.org/10.1103/RevModPhys.94.025002.

    Article  CAS  Google Scholar 

  2. Zhang Z, Guo Y, Bescond M, Chen J, Nomura M, Volz S. Heat conduction theory including phonon coherence. Phys Rev Lett. 2022;128(1):015901. https://doi.org/10.1103/PhysRevLett.128.015901.

    Article  CAS  Google Scholar 

  3. Shen Y, Wang FQ, Liu J, Guo Y, Li X, Qin G, Hu M, Wang Q. A C20 fullerene-based sheet with ultrahigh thermal conductivity. Nanoscale. 2018;10(13):6099. https://doi.org/10.1039/C8NR00110C.

    Article  CAS  Google Scholar 

  4. Ouyang Y, Zhang Z, Li D, Chen J, Zhang G. Emerging theory, materials, and screening methods: new opportunities for promoting thermoelectric performance. Ann Phys-Berlin. 2019;531(4):1800437. https://doi.org/10.1002/andp.201800437.

    Article  CAS  Google Scholar 

  5. Chen J, He J, Pan D, Wang X, Yang N, Zhu J, Yang SA, Zhang G. Emerging theory and phenomena in thermal conduction: a selective review. Sci China Phys Mech Astron. 2022;65(11):117002. https://doi.org/10.1007/s11433-022-1952-3.

    Article  Google Scholar 

  6. Lewis JS, Perrier T, Barani Z, Kargar F, Balandin AA. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. Nanotechnology. 2021;32(14):142003. https://doi.org/10.1088/1361-6528/abc0c6.

    Article  CAS  Google Scholar 

  7. Lu S, Ren W, He J, Yu C, Jiang P, Chen J. Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking. Phys Rev B. 2022;105(16):165301. https://doi.org/10.1103/PhysRevB.105.165301.

    Article  CAS  Google Scholar 

  8. Yu C, Ouyang Y, Chen J. Enhancing thermal transport in multilayer structures: a molecular dynamics study on Lennard-Jones solids. Front Phys. 2022;17(5):53507. https://doi.org/10.1007/s11467-022-1170-5.

    Article  Google Scholar 

  9. Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10(8):569. https://doi.org/10.1038/nmat3064.

    Article  CAS  Google Scholar 

  10. Chen X, Chen K. Thermal transport of carbon nanomaterials. J Phys Condes Matter. 2020;32(15):153002. https://doi.org/10.1088/1361-648x/ab5e57.

    Article  CAS  Google Scholar 

  11. Lindsay L, Broido DA. Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys Rev B. 2011;84(15):155421. https://doi.org/10.1103/PhysRevB.84.155421.

    Article  CAS  Google Scholar 

  12. Wang C, Guo J, Dong L, Aiyiti A, Xu X, Li B. Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci Rep. 2016;6(1):25334. https://doi.org/10.1038/srep25334.

    Article  CAS  Google Scholar 

  13. Zhang S, Zhu Y, Wang F, Liu X, Wu H, Luo SN. Theoretical analysis of high strength and anti-buckling of three-dimensional carbon honeycombs under shear loading. Compos Pt B Eng. 2021;219:108967. https://doi.org/10.1016/j.compositesb.2021.108967.

    Article  CAS  Google Scholar 

  14. Meng F, Chen C, Hu D, Song J. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: atomistic simulations and predictive modeling. J Mech Phys Solids. 2017;109:241. https://doi.org/10.1016/j.jmps.2017.09.003.

    Article  CAS  Google Scholar 

  15. Zhang Z, Kutana A, Yang Y, Krainyukova NV, Penev ES, Yakobson BI. Nanomechanics of carbon honeycomb cellular structures. Carbon. 2017;113:26. https://doi.org/10.1016/j.carbon.2016.11.020.

    Article  CAS  Google Scholar 

  16. Qin Q, An H, He C, **e L, Peng Q. Anisotropic and temperature dependent mechanical properties of carbon honeycomb. Nanotechnology. 2019;30(32):325704. https://doi.org/10.1088/1361-6528/ab14a1.

    Article  CAS  Google Scholar 

  17. Gao Y, Chen Y, Zhong C, Zhang Z, **e Y, Zhang S. Electron and phonon properties and gas storage in carbon honeycombs. Nanoscale. 2016;8(26):12863. https://doi.org/10.1039/C6NR03655D.

    Article  CAS  Google Scholar 

  18. Zhan H, Zhang G, Bell JM, Tan VBC, Gu Y. High density mechanical energy storage with carbon nanothread bundle. Nat Commun. 2020;11(1):1905. https://doi.org/10.1038/s41467-020-15807-7.

    Article  CAS  Google Scholar 

  19. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett. 2008;92(15):151911. https://doi.org/10.1063/1.2907977.

    Article  CAS  Google Scholar 

  20. Hu J, Wu W, Zhong C, Liu N, Ouyang C, Yang HY, Yang SA. Three-dimensional honeycomb carbon: junction line distortion and novel emergent fermions. Carbon. 2019;141:417. https://doi.org/10.1016/j.carbon.2018.09.027.

    Article  CAS  Google Scholar 

  21. Du Y, Zhou J, Ying P, Zhang J. Effects of cell defects on the mechanical and thermal properties of carbon honeycombs. Comput Mater Sci. 2021;187:110125. https://doi.org/10.1016/j.commatsci.2020.110125.

    Article  CAS  Google Scholar 

  22. Zhang H, Hu S, Wang H, Chen Y, Wang H, Ni Y. Thermal transport in three-dimensional carbon honeycombs. Chin J Phys. 2019;59:567. https://doi.org/10.1016/j.cjph.2019.04.017.

    Article  CAS  Google Scholar 

  23. Yang XX, Dai ZH, Zhao YC, Meng S. Phonon thermal transport in a class of graphene allotropes from first principles. Phys Chem Chem Phys. 2018;20(23):15980. https://doi.org/10.1039/c8cp00987b.

    Article  CAS  Google Scholar 

  24. Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N, Zhang G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys Rep. 2020;860:1. https://doi.org/10.1016/j.physrep.2020.03.001.

    Article  CAS  Google Scholar 

  25. He J, Hu Y, Li D, Chen J. Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination. Nano Res. 2022;15(4):3804. https://doi.org/10.1007/s12274-021-3908-8.

    Article  CAS  Google Scholar 

  26. Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419. https://doi.org/10.1038/nature12385.

    Article  CAS  Google Scholar 

  27. Yang G, Zhang X, Shang Y, Xu P, Pan D, Su F, Ji Y, Feng Y, Liu Y, Liu C. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos Sci Technol. 2021;201:108521. https://doi.org/10.1016/j.compscitech.2020.108521.

    Article  CAS  Google Scholar 

  28. Wu X, Han Q. Phonon thermal transport across multilayer graphene/hexagonal boron nitride van der waals heterostructures. ACS Appl Mater Interfaces. 2021;13(27):32564. https://doi.org/10.1021/acsami.1c08275.

    Article  CAS  Google Scholar 

  29. Ren W, Ouyang Y, Jiang P, Yu C, He J, Chen J. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der Waals heterostructure. Nano Lett. 2021;21(6):2634. https://doi.org/10.1021/acs.nanolett.1c00294.

    Article  CAS  Google Scholar 

  30. Dimitrakakis GK, Tylianakis E, Froudakis GE. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 2008;8(10):3166. https://doi.org/10.1021/nl801417w.

    Article  CAS  Google Scholar 

  31. Lv R, Cruz-Silva E, Terrones M. Building complex hybrid carbon architectures by covalent interconnections: graphene–nanotube hybrids and more. ACS Nano. 2014;8(5):4061. https://doi.org/10.1021/nn502426c.

    Article  CAS  Google Scholar 

  32. Park J, Prakash V. Phonon scattering and thermal conductivity of pillared graphene structures with carbon nanotube-graphene intramolecular junctions. J Appl Phys. 2014;116(1):014303. https://doi.org/10.1063/1.4885055.

    Article  CAS  Google Scholar 

  33. Lee J, Varshney V, Brown JS, Roy AK, Farmer BL. Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure. Appl Phys Lett. 2012;100(18):183111. https://doi.org/10.1063/1.4711206.

    Article  CAS  Google Scholar 

  34. Chen J, Walther JH, Koumoutsakos P. Covalently bonded graphene–carbon nanotube hybrid for high-performance thermal interfaces. Adv Funct Mater. 2015;25(48):7539. https://doi.org/10.1002/adfm.201501593.

    Article  Google Scholar 

  35. Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji ARO, Kittrell C, Hauge RH, Tour JM. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun. 2012;3(1):1225. https://doi.org/10.1038/ncomms2234.

    Article  CAS  Google Scholar 

  36. Zhang W, **e H, Zhang R, Jian M, Wang C, Zheng Q, Wei F, Zhang Y. Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon. 2015;86:358. https://doi.org/10.1016/j.carbon.2015.01.051.

    Article  CAS  Google Scholar 

  37. Krainyukova NV, Zubarev EN. Carbon honeycomb high capacity storage for gaseous and liquid species. Phys Rev Lett. 2016;116(5):055501. https://doi.org/10.1103/PhysRevLett.116.055501.

    Article  CAS  Google Scholar 

  38. Pang Z, Gu X, Wei Y, Yang R, Dresselhaus MS. Bottom-up design of three-dimensional carbon-honeycomb with superb specific strength and high thermal conductivity. Nano Lett. 2017;17(1):179. https://doi.org/10.1021/acs.nanolett.6b03711.

    Article  CAS  Google Scholar 

  39. Sheng N, Rao Z, Zhu C, Habazaki H. Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage. Appl Therm Eng. 2020;164:114493. https://doi.org/10.1016/j.applthermaleng.2019.114493.

    Article  CAS  Google Scholar 

  40. Wu X, Jiang L, Long C, Fan Z. From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy. 2015;13:527. https://doi.org/10.1016/j.nanoen.2015.03.013.

    Article  CAS  Google Scholar 

  41. Yuan Y, Liu L, Yang M, Zhang T, Xu F, Lin Z, Ding Y, Wang C, Li J, Yin W, Peng Q, He X, Li Y. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon. 2017;123:223. https://doi.org/10.1016/j.carbon.2017.07.060.

    Article  CAS  Google Scholar 

  42. Zhao W, Liu Z, Yu G, Wu L. A new multifunctional carbon fiber honeycomb sandwich structure with excellent mechanical and thermal performances. Compos Struct. 2021;274:114306. https://doi.org/10.1016/j.compstruct.2021.114306.

    Article  CAS  Google Scholar 

  43. **e L, An H, He C, Qin Q, Peng Q. Mechanical properties of vacancy tuned carbon honeycomb. Nanomaterials. 2019;9(2):156. https://doi.org/10.3390/nano9020156.

    Article  CAS  Google Scholar 

  44. Zhang J. Effects of cell irregularity on the thermal conductivity of carbon honeycombs. Carbon. 2018;131:127. https://doi.org/10.1016/j.carbon.2018.01.097.

    Article  CAS  Google Scholar 

  45. Gu X, Pang Z, Wei Y, Yang R. On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs. Carbon. 2017;119:278. https://doi.org/10.1016/j.carbon.2017.04.054.

    Article  CAS  Google Scholar 

  46. Klett JW, McMillan AD, Gallego NC, Walls CA. The role of structure on the thermal properties of graphitic foams. J Mater Sci. 2004;39(11):3659. https://doi.org/10.1023/B:JMSC.0000030719.80262.f8.

    Article  CAS  Google Scholar 

  47. Yue S, Qin G, Zhang X, Sheng X, Su G, Hu M. Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: an ab initio study. Phys Rev B. 2017;95(8):085207. https://doi.org/10.1103/PhysRevB.95.085207.

    Article  Google Scholar 

  48. Han Y, Yang J, Hu M. Unusual strain response of thermal transport in dimerized three-dimensional graphene. Nanoscale. 2018;10(11):5229. https://doi.org/10.1039/C7NR08626A.

    Article  CAS  Google Scholar 

  49. Han Y, Zhou Y, Qin G, Dong J, Galvao DS, Hu M. Unprecedented mechanical response of the lattice thermal conductivity of auxetic carbon crystals. Carbon. 2017;122:374. https://doi.org/10.1016/j.carbon.2017.06.100.

    Article  CAS  Google Scholar 

  50. Chen J, Walther JH, Koumoutsakos P. Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 2014;14(2):819. https://doi.org/10.1021/nl404182k.

    Article  CAS  Google Scholar 

  51. Wu M, Wu X, Pei Y, Wang Y, Zeng XC. Three-dimensional network model of carbon containing only sp2-carbon bonds and boron nitride analogues. Chem Commun. 2011;47(15):4406. https://doi.org/10.1039/C0CC05738J.

    Article  CAS  Google Scholar 

  52. Zhang Z, Chen J, Li B. Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale. 2017;9(37):14208. https://doi.org/10.1039/C7NR04944G.

    Article  CAS  Google Scholar 

  53. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1. https://doi.org/10.1006/jcph.1995.1039.

    Article  CAS  Google Scholar 

  54. Lindsay L, Broido DA. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B. 2010;81(20):205441. https://doi.org/10.1103/PhysRevB.81.205441.

    Article  CAS  Google Scholar 

  55. Cao A, Qu J. Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys. 2012;112(1):013503. https://doi.org/10.1063/1.4730908.

    Article  CAS  Google Scholar 

  56. Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613. https://doi.org/10.1103/PhysRevLett.84.4613.

    Article  CAS  Google Scholar 

  57. Xu X, Chen J, Li B. Phonon thermal conduction in novel 2D materials. J Phys Condes Matter. 2016;28(48):483001. https://doi.org/10.1088/0953-8984/28/48/483001.

    Article  CAS  Google Scholar 

  58. Sääskilahti K, Oksanen J, Volz S, Tulkki J. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B. 2015;91(11):115426. https://doi.org/10.1103/PhysRevB.91.115426.

    Article  CAS  Google Scholar 

  59. Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures. Nanoscale. 2019;11(24):11839. https://doi.org/10.1039/C9NR02548K.

    Article  CAS  Google Scholar 

  60. Ma Y, Zhang Z, Chen J, Sääskilahti K, Volz S, Chen J. Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon. 2018;135:263. https://doi.org/10.1016/j.carbon.2018.04.030.

    Article  CAS  Google Scholar 

  61. Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure. Nanotechnology. 2022;33(3):035707. https://doi.org/10.1088/1361-6528/ac2f5c.

    Article  CAS  Google Scholar 

  62. Chen X, Liu J, Du D, **e Z, Chen K. Anisotropic thermal conductivity in carbon honeycomb. J Phys Condes Matter. 2018;30(15):155702. https://doi.org/10.1088/1361-648X/aab38d.

    Article  Google Scholar 

  63. Su R, Zhang X. Size effect of thermal conductivity in monolayer graphene. Appl Therm Eng. 2018;144:488. https://doi.org/10.1016/j.applthermaleng.2018.08.062.

    Article  CAS  Google Scholar 

  64. Yue SY, Ouyang T, Hu M. Diameter dependence of lattice thermal conductivity of single-walled carbon nanotubes: study from Ab Initio. Sci Rep. 2015;5(1):15440. https://doi.org/10.1038/srep15440.

    Article  CAS  Google Scholar 

  65. Fujii M, Zhang X, **e H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett. 2005;95(6):065502. https://doi.org/10.1103/PhysRevLett.95.065502.

    Article  CAS  Google Scholar 

  66. Ma D, Ding H, Wang X, Yang N, Zhang X. The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. Int J Heat Mass Transf. 2017;108:940. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.092.

    Article  CAS  Google Scholar 

  67. Yu W, Liu C, Fan S. Advances of CNT-based systems in thermal management. Nano Res. 2021;14(8):2471. https://doi.org/10.1007/s12274-020-3255-1.

    Article  Google Scholar 

  68. Zhao Y, Min X, Huang Z, Liu YG, Wu X, Fang M. Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy Build. 2018;158:1049. https://doi.org/10.1016/j.enbuild.2017.10.078.

    Article  Google Scholar 

  69. Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys Rev B. 2002;65(14):144306. https://doi.org/10.1103/PhysRevB.65.144306.

    Article  CAS  Google Scholar 

  70. Yeganeh M, Vahedi FD. Phonon transport properties of two dimensional group-III nitrides (BN, AlN, and GaN). Superlattices Microstruct. 2021;156:106984. https://doi.org/10.1016/j.spmi.2021.106984.

    Article  CAS  Google Scholar 

  71. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA. Dimensional crossover of thermal transport in few-layer graphene. Nat Mater. 2010;9(7):555. https://doi.org/10.1038/nmat2753.

    Article  CAS  Google Scholar 

  72. Harb M, von Korff SC, Enquist H, Jurgilaitis A, Maximov I, Shvets PV, Obraztsov AN, Khakhulin D, Wulff M, Larsson J. The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction. Appl Phys Lett. 2012;101(23):233108. https://doi.org/10.1063/1.4769214.

    Article  CAS  Google Scholar 

  73. Mavrokefalos A, Nguyen NT, Pettes MT, Johnson DC, Shi L. In-plane thermal conductivity of disordered layered WSe2 and (W)x(WSe2)y superlattice films. Appl Phys Lett. 2007;91(17):171912. https://doi.org/10.1063/1.2800888.

    Article  CAS  Google Scholar 

  74. Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A, Keblinski P, Zschack P. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science. 2007;315(5810):351. https://doi.org/10.1126/science.1136494.

    Article  CAS  Google Scholar 

  75. Ding Z, Jiang JW, Pei QX, Zhang YW. In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology. 2015;26(6):065703. https://doi.org/10.1088/0957-4484/26/6/065703.

    Article  CAS  Google Scholar 

  76. Ding Z, Pei QX, Jiang JW, Huang W, Zhang YW. Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon. 2016;96:888. https://doi.org/10.1016/j.carbon.2015.10.046.

    Article  CAS  Google Scholar 

  77. Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013;13(2):550. https://doi.org/10.1021/nl304060g.

    Article  CAS  Google Scholar 

  78. Jiang P, Qian X, Yang R, Lindsay L. Anisotropic thermal transport in bulk hexagonal boron nitride. PhysRev Mater. 2018;2(6):064005. https://doi.org/10.1103/PhysRevMaterials.2.064005.

    Article  CAS  Google Scholar 

  79. Deng Y, Cranford SW. Thermal conductivity of 1D carbyne chains. Comput Mater Sci. 2017;129:226. https://doi.org/10.1016/j.commatsci.2016.12.026.

    Article  CAS  Google Scholar 

  80. Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B. Randomness-induced phonon localization in graphene heat conduction. J Phys Chem Lett. 2018;9(14):3959. https://doi.org/10.1021/acs.jpclett.8b01653.

    Article  CAS  Google Scholar 

  81. Liu Y, Ren W, An M, Dong L, Gao L, Shai X, Wei T, Nie L, Hu S, Zeng C. A qualitative study of the disorder effect on the phonon transport in a two-dimensional graphene/h-BN heterostructure. Front Mater. 2022;9:913764. https://doi.org/10.3389/fmats.2022.913764.

    Article  Google Scholar 

  82. Tan J, Li W, Ma C, Wu Q, Xu Z, Liu S. Synthesis of honeycomb-like carbon foam from larch sawdust as efficient absorbents for oil spills cleanup and recovery. Materials. 2018;11(7):1106. https://doi.org/10.3390/ma11071106.

    Article  CAS  Google Scholar 

  83. Zheng Z, Yu J, Li J. Dynamic crushing of 2D cellular structures: a finite element study. Int J Impact Eng. 2005;32(1):650. https://doi.org/10.1016/j.ijimpeng.2005.05.007.

    Article  Google Scholar 

  84. Wu X, Han Q. Thermal conductivity of defective graphene: an efficient molecular dynamics study based on graphics processing units. Nanotechnology. 2020;31(21):215708. https://doi.org/10.1088/1361-6528/ab73bc.

    Article  CAS  Google Scholar 

  85. Hu S, Chen J, Yang N, Li B. Thermal transport in graphene with defect and do**: phonon modes analysis. Carbon. 2017;116:139. https://doi.org/10.1016/j.carbon.2017.01.089.

    Article  CAS  Google Scholar 

  86. Khalkhali M, Khoeini F. Impact of torsion and disorder on the thermal conductivity of Si nanowires: a nonequilibrium molecular dynamics study. J Phys Chem Solids. 2018;112:216. https://doi.org/10.1016/j.jpcs.2017.09.032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the grants from the National Natural Science Foundation of China (Nos. 12075168 and 11890703), the Science and Technology Commission of Shanghai Municipality (No. 21JC1405600), and the Fundamental Research Funds for the Central Universities (No. 22120220060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, WJ., Lu, S., Yu, CQ. et al. Carbon honeycomb structure with high axial thermal transport and strong robustness. Rare Met. 42, 2679–2687 (2023). https://doi.org/10.1007/s12598-023-02314-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02314-z

Keywords

Navigation