Log in

Thermal shock synthesis of carbon nanotubes supporting small-sized rhenium nanoparticles for efficient electrocatalytic hydrogen evolution

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

铼(Re)由于其金属-氢相互作用与铂类似,**年来成为一种很有前途的析氢反应(HER)催化剂。然而,获得具有丰富活性位点的小尺寸铼纳米颗粒受到所需的高温制备条件限制,高效的铼基析氢反应(HER)催化剂的发展仍处于初级阶段。在本研究中,我们报道了通过热冲击法制备均匀分散在导电碳纳米管支架上的小尺寸金属铼纳米颗粒(Re/CNTs-flash)。与传统的加热工艺不同,该方法可以在数秒内完成纳米晶的生长及淬火,这种极短的高温处理可以成功制备6 nm的金属铼纳米晶粒,避免后续过分生长或团聚。Re/CNTs-flash具有较大的电化学比表面积且有利于表面电荷转移,作为电化学HER催化剂,具有起始过电位低、塔费尔斜率小以及在酸性或碱性条件下稳定性良好的优点。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hamann T. Perovskites take lead in solar hydrogen race. Science. 2014;345(6204):1566. https://doi.org/10.1126/science.1260051.

    Article  CAS  Google Scholar 

  2. Odenweller A, Ueckerdt F, Nemet GF, Jensterle M, Luderer G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat Energy. 2022;7(9):854. https://doi.org/10.1038/s41560-022-01097-4.

    Article  Google Scholar 

  3. Wang N, Yao K, Vomiero A, Wang Y, Liang H. Inhibiting carbonate formation using CO2–CO–C2+ tandems. SmartMat. 2021;2(4):423. https://doi.org/10.1002/smm2.1048.

    Article  Google Scholar 

  4. Zang D, Gao XJ, Li L, Wei Y, Wang H. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022;15(10):8872. https://doi.org/10.1007/s12274-022-4698-3.

    Article  CAS  Google Scholar 

  5. Han J, Zhao M, Wang H. Preparation of electrodeposited Pb electrode and its application to electroreduction of CO2 to formic acid. J Tian** Univ. 2014;47(7):621. https://doi.org/10.11784/tdxbz201301044.

    Article  Google Scholar 

  6. Liu Y, Li X, Zhang Q, Li W, **e Y, Liu H, Shang L, Liu Z, Chen Z, Gu L, Tang Z, Zhang T, Lu S. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew Chem Int Ed. 2020;59(4):1718. https://doi.org/10.1002/anie.201913910.

    Article  CAS  Google Scholar 

  7. Feng Y, Duan Y, Zou H, Ma J, Zhou K, Zhou X. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chinese J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Article  Google Scholar 

  8. An C, Kang W, Deng Q, Hu N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2022;41(2):378. https://doi.org/10.1007/s12598-021-01791-4.

    Article  CAS  Google Scholar 

  9. Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021;40(5):1040. https://doi.org/10.1007/s12598-020-01665-1.

    Article  CAS  Google Scholar 

  10. Wang N, Miao RK, Lee G, Vomiero A, Sinton D, Ip AH, Liang H, Sargent EH. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat. 2021;2(1):12. https://doi.org/10.1002/smm2.1018.

    Article  CAS  Google Scholar 

  11. Wei JX, Cao MZ, **ao K, Guo XP, Ye SY, Liu ZQ. In situ confining Pt clusters in ultrathin MnO2 nanosheets for highly efficient hydrogen evolution reaction. Small Struct. 2021;2(9):2100047. https://doi.org/10.1002/sstr.202100047.

    Article  CAS  Google Scholar 

  12. He L, Zhang W, Mo Q, Huang W, Yang L, Gao Q. Molybdenum carbide-oxide heterostructures: in situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angew Chem Int. 2020;59(9):3544. https://doi.org/10.1002/anie.201914752.

    Article  CAS  Google Scholar 

  13. Liu K, Fu J, Lin Y, Luo T, Ni G, Li H, Lin Z, Liu M. Insights into the activity of single-atom Fe–N–C catalysts for oxygen reduction reaction. Nat Commun. 2022;13(1):2075. https://doi.org/10.1038/s41467-022-29797-1.

    Article  CAS  Google Scholar 

  14. Deng BL, Guo LP, Lu Y, Rong HB, Cheng DC. Sulfur–nitrogen Co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions. Rare Met. 2021;41(3):911. https://doi.org/10.1007/s12598-021-01828-8.

    Article  CAS  Google Scholar 

  15. Li M, **a Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural eegulation of Pd-based banoalloys for advanced electrocatalysis. Small Sci. 2021;1(11):2100061. https://doi.org/10.1002/smsc.202100061.

    Article  CAS  Google Scholar 

  16. Wei J, **ao K, Chen Y, Guo XP, Huang B, Liu ZQ. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ Sci. 2022. https://doi.org/10.1039/d2ee02151j.

    Article  Google Scholar 

  17. **ao K, Lin RT, Wei JX, Li N, Li H, Ma T, Liu ZQ. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Res. 2022;15(6):4980. https://doi.org/10.1007/s12274-022-4140-x.

    Article  CAS  Google Scholar 

  18. U.S. Geological Survey, Reston, Virginia. National Minerals Information Center. Mineral Commmodity Summaries 2021;2021:134. https://doi.org/10.3133/mcs2021.

  19. U.S. Geological Survey, Reston, Virginia. National Minerals Information Center. Mineral Commmodity Summaries 2022;2022:126. https://doi.org/10.3133/mcs2022.

  20. Zhang X, Shang L, Yang Z, Zhang T. A rhenium single-atom catalyst for the electrocatalytic oxygen reduction reaction. ChemPlusChem. 2021;86(12):1635. https://doi.org/10.1002/cplu.202100424.

    Article  CAS  Google Scholar 

  21. Nørskov J, Bligaard T, Logadottir A, Kitchin J, Chen J, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23. https://doi.org/10.1149/1.1856988.

    Article  CAS  Google Scholar 

  22. Quaino P, Juarez F, Santos E, Schmickler W. Volcano plots in hydrogen electrocatalysis-uses and abuses. Beilstein J Nanotechnol. 2014;5:846. https://doi.org/10.3762/bjnano.5.96.

    Article  CAS  Google Scholar 

  23. Zeradjanin A, Grote J, Polymeros G, Mayrhofer K. A critical review on hydrogen evolution electrocatalysis: re-exploring the volcano-relationship. Electroanalysis. 2016;28(10):2256. https://doi.org/10.1002/elan.201600270.

    Article  CAS  Google Scholar 

  24. Gao H, Yue H, Qi F, Yu B, Zhang W, Chen Y. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014. https://doi.org/10.1007/s12598-018-1121-z.

    Article  CAS  Google Scholar 

  25. Zhuo Z, Zhu J, Wei A, Liu J, Luo N, Zhao Y, Liu Z. Electrocatalytic performance of ReS2 nanosheets in hydrogen evolution reaction. Int J Hydrog Energy. 2022;47(4):2293. https://doi.org/10.1016/j.ijhydene.2021.10.120.

    Article  CAS  Google Scholar 

  26. Vargas-Uscateguia A, Mosquerab E, Chornikc B, Cifuentesa L. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current. Electrochim Acta. 2015;178:739. https://doi.org/10.1016/j.electacta.2015.08.065.

    Article  CAS  Google Scholar 

  27. Yang L, Lu S, Wang H, Shao Q, Liao F, Shao M. The self-activation and synergy of amorphous Re nanoparticle-Si nanowire composites for the electrocatalytic hydrogen evolution. Electrochim Acta. 2017;228:268. https://doi.org/10.1016/j.electacta.2017.01.048.

    Article  CAS  Google Scholar 

  28. Dobrzańska-Danikiewicz AD, Wolany W. A rhenium review-from discovery to novel applications. Arch Mater Sci Eng. 2016;82(2):70.

    Article  Google Scholar 

  29. Kremlev KV, Obiedkov AM, Ketkov SY, Kaverin BS, Semenov NM, Domrachev GA, Gusev SA, Tatarskiy DA, Yunin PA. New hybrid material based on multiwalled carbon nanotubes decorated with rhenium nanoparticles. J Surf Investig. 2015;9(4):694. https://doi.org/10.1134/s1027451015040114.

    Article  CAS  Google Scholar 

  30. Rak MJ, Friscic T, Moores A. Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discuss. 2014;170:155. https://doi.org/10.1039/c4fd00053f.

    Article  CAS  Google Scholar 

  31. Kim M, Yang Z, Heuk J, Yoon S, Grzybowski A. Nanostructured rhenium-carbon composites as hydrogen evolving catalysts effective over the entire pH range. ACS Appl Nano Mater. 2019;2:2725. https://doi.org/10.1021/acsanm.9b00236.

    Article  CAS  Google Scholar 

  32. Dobrzańska-Danikiewicz AD, Wolany W. Nanocomposites consisting of SWCNTs/DWCNTs decorated with Re nanoparticles. Arch Mater Sci Eng. 2015;74(2):53.

    Google Scholar 

  33. Yao Y, Huang Z, **e P, Lacey SD, Jacob RJ, **e H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah MR, Wang C, Shahbazian-Yassar R, Li J, Hu L. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359:1489. https://doi.org/10.1126/science.aan5412.

    Article  CAS  Google Scholar 

  34. Zhang S, Gao Y, Zhang Z, Gu T, Liang X, Wang L. Research progress on functional properties of novel high-entropy metallic glasses. Chin J Rare Met. 2021;45(6):717. https://doi.org/10.13373/j.cnki.cjrm.XY20040022.

    Article  Google Scholar 

  35. Guo Y, Yao S, Xue Y, Hu X, Cui H, Zhou Z. Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Appl Catal B. 2022;304:120997. https://doi.org/10.1016/j.apcatb.2021.120997.

    Article  CAS  Google Scholar 

  36. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun. 2013;4:1805. https://doi.org/10.1038/ncomms2812.

    Article  CAS  Google Scholar 

  37. Wu K, Zhang Y, Yong Z, Li Q. Continuous preparation and performance enhancement techniques of carbon nanotube fibers. Acta Physi Chim Sin. 2021;38(9):2106034. https://doi.org/10.3866/pku.Whxb202106034.

    Article  Google Scholar 

  38. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater. 2011;10(10):780. https://doi.org/10.1038/nmat3087.

    Article  CAS  Google Scholar 

  39. Cotton F, Mague J. The existence of the Re3Cl9 cluster in anhydrous rhenium(III) chloride and its persistence in solutions of rhenium(III) chloride. Inorg Chem. 1964;3(10):1402.

    Article  CAS  Google Scholar 

  40. Schmid H. Kalium-Rhenium(IV)-chlorid und organische derivate des 4-wertigen rheniums. Z Anorg Allg Chem. 1933;212(2):187. https://doi.org/10.1002/zaac.19332120207.

    Article  CAS  Google Scholar 

  41. Sun Q, Zhang B, Song K, Guo Y, Wang Y, Liu E, He F. Electronic reconfiguration of metal rhenium induced by strong metal-support interaction enhancing the hydrogen evolution reaction. Adv Mater Interfaces. 2021;8:2100545. https://doi.org/10.1002/admi.202100545.

    Article  CAS  Google Scholar 

  42. Vijayan A, Sandhyarani N. Enhancing the catalytic activity of bulk MoS2 towards hydrogen evolution reaction by the formation of MoS2-MoO3-Re2O7 heterostructure. J Colloid Interface Sci. 2022;623:819. https://doi.org/10.1016/j.jcis.2022.05.107.

    Article  CAS  Google Scholar 

  43. Qi Y, Meng C, Xu X, Deng B, Han N, Liu M, Hong M, Ning Y, Liu K, Zhao J, Fu Q, Li Y, Zhang Y, Liu Z. Unique transformation from graphene to carbide on Re(0001) induced by strong carbon-metal interaction. J Am Chem Soc. 2017;139(48):17574. https://doi.org/10.1021/jacs.7b09755.

    Article  CAS  Google Scholar 

  44. Ma W, **e S, Zhang XG, Sun F, Kang J, Jiang Z, Zhang Q, Wu DY, Wang Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun. 2019;10(1):892. https://doi.org/10.1038/s41467-019-08805-x.

    Article  CAS  Google Scholar 

  45. Zhou J, Wang F, Wang H, Hu S, Zhou W, Liu H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2022. https://doi.org/10.1007/s12274-022-4901-6.

    Article  Google Scholar 

  46. Hu C, Zhang L, Gong J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ Sci. 2019;12(9):2620. https://doi.org/10.1039/c9ee01202h.

    Article  CAS  Google Scholar 

  47. Zhang YY, Zhang N, Peng P, Wang R, ** Y, Lv YK, Wang X, Wei W, Zang SQ. Uniformly dispersed Ru nanoparticles constructed by in situ confined polymerization of ionic liquids for the electrocatalytic hydrogen evolution reaction. Small Methods. 2021;5(7):e2100505. https://doi.org/10.1002/smtd.202100505.

    Article  CAS  Google Scholar 

  48. Garcia G, Rivera J, Antano L, Castaneda O, Orozco G. Impedance spectra of the cathodic hydrogen evolution reaction on polycrystalline rhenium. Int J Hydrog Energy. 2016;41(8):4660. https://doi.org/10.1016/j.ijhydene.2016.01.010.

    Article  CAS  Google Scholar 

  49. Zhou G, Guo Z, Shan Y, Wu S, Zhang J, Yan K, Liu L, Chu PK, Wu X. High-efficiency hydrogen evolution from seawater using hetero-structured T/Td phase ReS2 nanosheets with cationic vacancies. Nano Energy. 2019;55:42. https://doi.org/10.1016/j.nanoen.2018.10.047.

    Article  CAS  Google Scholar 

  50. Kwon I, Kwak I, Ju S, Kang S, Han S, Park Y, Park J, Park J. Adatom do** of transition metals in ReSe2 nanosheets for enhanced electrocatalytic hydrogen evolution reaction. ACS Nano. 2020;14:12184. https://doi.org/10.1021/acsnano.0c05874.

    Article  CAS  Google Scholar 

  51. Kwak IH, Debela TT, Kwon IS, Seo J, Yoo SJ, Kim JG, Ahn JP, Park J, Kang HS. Anisotropic alloying of Re1−xMoxS2 nanosheets to boost the electrochemical hydrogen evolution reaction. J Mater Chem A. 2020;8:25131. https://doi.org/10.1039/d0ta09299a.

    Article  CAS  Google Scholar 

  52. Kwak IH, Kwon IS, Debela TT, Abbas HG, Park YC, Seo J, Ahn JP, Lee JH, Park J, Kang HS. Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano. 2020;14:11995. https://doi.org/10.1021/acsnano.0c05159.

    Article  CAS  Google Scholar 

  53. Lux J, Marvan P, Lazar P, Sofer Z. Chalcogenide vacancies drive the electrocatalytic performance of rhenium dichalcogenides. Nanoscale. 2019;11:14684. https://doi.org/10.1039/c9nr03281a.

    Article  CAS  Google Scholar 

  54. Feng Q, Li M, Wang T, Chen Y, Wang X, Zhang X, Li X, Yang Z, Feng L, Zheng J, Xu H, Zhai T, Jiang Y. Low-temperature growth of three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on graphene/polyimide film for enhanced hydrogen evolution reaction. Appl Catal B. 2020;271:118924. https://doi.org/10.1016/j.apcatb.2020.118924.

    Article  CAS  Google Scholar 

  55. Sun F, Wang Y, Fang L, Yang X, Fu W, Tian D, Huang Z, Li J, Zhang H, Wang Y. New vesicular carbon-based rhenium phosphides with all-pH range electrocatalytic hydrogen evolution activity. Appl Catal B. 2019;2560:117851. https://doi.org/10.1016/j.apcatb.2019.117851.

    Article  CAS  Google Scholar 

  56. Guo X, Wu T, Zhao S, Fang Y, Xu S, **e M, Huang F. Band structure engineering of W replacement in ReSe2 nanosheets for enhancing hydrogen evolution. Chem Commun. 2022;58(16):2682. https://doi.org/10.1039/d1cc07151c.

    Article  CAS  Google Scholar 

  57. Zhao Y, Li J, Huang J, Feng L, Cao L, Feng Y, Zhang Z, **e Y, Wang H. Controlled growth of edge-enriched ReS2 nanoflowers on carbon cloth using chemical vapor deposition for hydrogen evolutionn. Adv Mater Interfaces. 2020;7(22):2001196. https://doi.org/10.1002/admi.202001196.

    Article  CAS  Google Scholar 

  58. Yan Y, Xu S, Li H, Selvam N, Lee J, Lee H, Yoo P. Perpendicularly anchored ReSe2 nanoflakes on reduced graphene oxide support for highly efficient hydrogen evolution reactions. Chem Eng J. 2021;405:12675. https://doi.org/10.1016/j.cej.2020.126728.

    Article  CAS  Google Scholar 

  59. Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano. 2016;10(12):11337. https://doi.org/10.1021/acsnano.6b06580.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22202222, 52172221, 52272229 and 21902113), the Natural Science Foundation of Jiangsu Province (Nos. BK20190225 and BK20200101), the National Key R&D Program of China (No. 2021YFF0502000), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology and the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le He or Yang Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 38304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, G., Zhao, R., Shi, YR. et al. Thermal shock synthesis of carbon nanotubes supporting small-sized rhenium nanoparticles for efficient electrocatalytic hydrogen evolution. Rare Met. 42, 2166–2173 (2023). https://doi.org/10.1007/s12598-022-02259-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02259-9

Navigation