Log in

Enhanced thermoelectric performance of Cu2SnSe3 via synergistic effects of Cd-do** and CuGaTe2 alloying

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, we show significantly enhanced thermoelectric performance in Cu2SnSe3 via a synergistic effect of Cd-do** and CuGaTe2 alloying in the temperature range of 300–823 K. Both the electron and phonon transport properties can be simultaneously regulated by Cd do** at Sn site, leading to a higher quality factor. Meanwhile, a maximum figure of merit (zT) value of ~ 0.68 was obtained for Cu2Sn0.93Cd0.07Se3 sample at 823 K, which is about four times higher than that of the pristine sample (zT = 0.18 at 773 K). Furthermore, Cu2Sn0.93Cd0.07Se3 was alloyed with CuGaTe2 to reduce the lattice thermal conductivity in the high-temperature region. Consequently, a further enhanced zT value (0.77, 823 K) was achieved in the (Cu2Sn0.93Cd0.07Se3)0.94(CuGaTe2)0.06 sample, with a high average zT (zTave) value of 0.30 between 300 and 823 K. These results demonstrate that Cd-do** combined with CuGaTe2 alloying could be an effective method to enhance zT values of Cu2SnSe3 based compounds.

Graphical abstract

摘要

本文通过在Cu2SnSe3中掺杂Cd和固溶CuGaTe2, 实现了热电性能提升的协同效应, 最终使Cu2SnSe3材料体系热电性能在300-823 K得到显著增**. 在Sn位点掺杂Cd可以协同调控电子和声子输运特性, 从而提高品质因子. 同时, 在823 K下, Cu2Sn0.93Cd0.07Se3样品的峰值热电优值 (zT) 达到0.68, 是母体的最大热电优值 (773 K, zT = 0.18) 的4倍左右. 进一步在Cu2Sn0.93Cd0.07Se3样品中固溶CuGaTe2能降低该体系材料高温区的晶格热导率. 最终, (Cu2Sn0.93Cd0.07Se3)0.94(CuGaTe2)0.06样品的热电优值 (zT) 较母体获得了大幅提升 (0.77, 823 K), 最大**均热电优值 (zTave) 在300-823 K之间为0.30. 这些结果表明, Cd掺杂与CuGaTe2固溶的结合为Cu2SnSe3基化合物热电优值的优化提供了有效策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu HH, Zhuang HL, Jiang YL, Shi JL, Li JW, Cai BW, Han ZR, Pei J, Su B, Ge ZH, Zhang BP, Li JF. Thermoelectric Cu12Sb4S13-based synthetic minerals with a sublimation-derived porous network. Adv Mater. 2021;33(43):2103633.

    Article  CAS  Google Scholar 

  2. Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai SQ, Yang Jh, Zhang WQ, Chen LD. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc. 2011;133(20):7837.

    Article  CAS  Google Scholar 

  3. Tian BZ, Jiang XP, Chen J, Gao H, Wang ZG, Tang J, Zhou DL, Yang L, Chen ZG. Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag. Rare Met. 2022;41(1):86.

    Article  CAS  Google Scholar 

  4. Zhou XY, Yan YC, Lu X, Zhu HT, Han XD, Chen G, Ren ZF. Routes for high-performance thermoelectric materials. Mater Today. 2018;21(9):974.

    Article  CAS  Google Scholar 

  5. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):1457.

    Article  Google Scholar 

  6. Morelli DT, Jovovic V, Heremans JP. Intrinsically minimal thermal conductivity in Cubic I-V-VI2 semiconductors. Phys Rev Lett. 2008;101(3):16.

    Article  Google Scholar 

  7. Fan YJ, Wang GY, Wang R, Zhang B, Shen XC, Jiang PF, Zhang X, Gu HS, Lu X, Zhou XY. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy. J Alloys Compd. 2020;822: 153665.

    Article  CAS  Google Scholar 

  8. Shen XC, **a Y, Yang CC, Zhang Z, Li SL, Tung YH, Benton A, Zhang X, Lu X, Wang GY, He J, Zhou XY. High thermoelectric performance in sulfide-type argyrodites compound Ag8Sn(S1−xSex)6 enabled by ultralow lattice thermal conductivity and extended cubic phase regime. Adv Funct Mater. 2020;30(21):2000526.

    Article  CAS  Google Scholar 

  9. Li AR, Hu CL, He B, Yao MY, Fu CG, Wang YC, Zhao XB, Felser C, Zhu TJ. Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nat Commun. 2021;12:5408.

    Article  CAS  Google Scholar 

  10. Fan YJ, Wang GY, Zhang B, Li Z, Wang GW, Zhang X, Huang YL, Chen KS, Gu HS, Lu X, Zhou XY. Synergistic effect of CuInSe2 alloying on enhancement in thermoelectric performance of Cu2SnSe3 compounds. J Mater Chem A. 2020;8:21181.

    Article  CAS  Google Scholar 

  11. Chang C, Wu MH, He DS, Pei YL, Wu CF, Wu XF, Yu HL, Zhu FY, Wang KD, Chen Y, Huang L, Li JF, He JQ, Zhao LD. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science. 2018;360(6390):778.

    Article  CAS  Google Scholar 

  12. Yang J, ** LL, Qiu WJ, Wu LH, Shi X, Chen LD, Yang JH, Zhang WQ, Uher C, Singh DJ. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. Npj Comput Mater. 2016;16:2057.

    Google Scholar 

  13. Peng KL, Zhang B, Wu H, Cao XL, Li A, Yang DF, Lu X, Wang GY, Han XD, Uher C, Zhou XY. Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals. Mater Today. 2018;21(5):501.

    Article  CAS  Google Scholar 

  14. Jiang BB, Yu Y, Chen HY, Cui J, Liu XX, **e L, He JQ. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat Commun. 2021;12:3234.

    Article  CAS  Google Scholar 

  15. Zhang YM, Shen XC, Yan YC, Wang GW, Wang GY, Li JY, Lu X, Zhou XY. Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering. Rare Met. 2020;39(11):1256.

    Article  CAS  Google Scholar 

  16. Shen XC, Zhang X, Zhang B, Wang GY, He J, Zhou XY. Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering. Rare Met. 2020;39(12):1374.

    Article  CAS  Google Scholar 

  17. Wu H, Lu X, Wang GY, Peng KL, Zhang B, Chen YJ, Gong XN, Tang XD, Zhang XM, Feng ZZ, Han G, Zhang YS, Zhou XY. Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy. 2020;76: 105084.

    Article  CAS  Google Scholar 

  18. ** M, Lin SQ, Li W, Chen ZW, Li RB, Wang XH, Chen YX, Pei YZ. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chem Mater. 2019;31(7):2603.

    Article  CAS  Google Scholar 

  19. Li W, Lin SQ, Ge BH, Yang J, Zhang WQ, Pei YZ. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Adv Sci. 2016;3(11):1600196.

    Article  Google Scholar 

  20. Peng KL, Zhou ZZ, Wang HH, Wu H, Ying JJ, Han G, Lu X, Wang GY, Zhou XY, Chen XH. Exceptional performance driven by planar honeycomb structure in a new high temperature thermoelectric material BaAgAs. Adv Funct Mater. 2021;31(24):2100583.

    Article  CAS  Google Scholar 

  21. Dargusch M, Liu WD, Chen ZG. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems. Adv Science. 2020;7(18):2001362.

    Article  CAS  Google Scholar 

  22. Liu WD, Wang DZ, Liu QF, Zhou W, Shao ZP, Chen ZG. High-performance GeTe-based thermoelectrics: from materials to devices. Adv Energy Mater. 2020;10(19):2000367.

    Article  CAS  Google Scholar 

  23. Deng SP, Jiang XY, Chen LL, Zhang ZY, Qi N, Wu YC, Tang XF, Chen ZQ. Structural features and thermoelectric performance of Sb- and Bi-doped Cu2SnSe3 compounds. Rare Met. 2021;40(9):2474.

    Article  Google Scholar 

  24. Chen QF, Wang XX, Wu ZS, Liu CY, Miao L. Recent advances in SnSe-based thermoelectric materials. Chin J Rare Met. 2020;44(12):1316.

    Google Scholar 

  25. Liu WD, Yang L, Chen ZG. Cu2Se thermoelectrics: property, methodology, and device. Nano Today. 2020;35: 100938.

    Article  CAS  Google Scholar 

  26. Wei TR, Qin YT, Deng TT, Song QF, Jiang BB, Liu RH, Qiu PF, Shi X, Chen LD. Copper chalcogenide thermoelectric materials. Sci China Mater. 2019;62:8.

    Article  CAS  Google Scholar 

  27. Cheng X, Li Z, You YH, Zhu T, Yan YG, Su XL, Tang XF. Role of cation vacancies in Cu2SnSe3 thermoelectrics. ACS Appl Mater Inter. 2019;11(27):24212.

    Article  CAS  Google Scholar 

  28. Li YY, Liu GH, Cao TF, Liu LM, Li JT, Chen KX, Li LF, Han YM, Zhou M. Enhanced thermoelectric properties of Cu2SnSe3 by (Ag, In)-Co-do**. Adv Funct Mater. 2016;26(33):6025.

    Article  CAS  Google Scholar 

  29. Shi XY, ** LL, Fan J, Zhang WQ, Chen LD. Cu-Se bond network and thermoelectric compounds with complex diamondlike structure. Chem Mater. 2010;22(22):6029.

    Article  CAS  Google Scholar 

  30. Ming HW, Zhu C, Qin XY, Zhang J, Li D, Zhang BL, Chen T, Li JM, Lou XN, **n HX. Improved figure of merit of Cu2SnSe3 via band structure modification and energy-dependent carrier scattering. ACS Appl Mater Inter. 2020;12(17):19693.

    Article  CAS  Google Scholar 

  31. Zhang J, Huang LL, Zhu XG, Wang ZM, Song CJ, **n HX, Li D, Qin XY. Realized high power factor and thermoelectric performance in Cu2SnSe3. Scr Mater. 2019;159:46.

    Article  CAS  Google Scholar 

  32. Hu L, Luo YB, Fang YW, Qin FY, Cao X, **e HY, Liu JW, Dong JF, Sanson A, Giarola M, Tan XY, Zheng Y, Suwardi A, Huang YZ, Hippalgaonkar K, He JQ, Zhang WQ, Xu JW, Yan QY, Kanatzidis MG. High thermoelectric performance through crystal symmetry enhancement in triply doped diamondoid compound Cu2SnSe3. Adv Energy Mater. 2021;11(42):2100661.

    Article  CAS  Google Scholar 

  33. Ming HW, Zhu GF, Zhu C, Qin XY, Chen T, Zhang J, Li D, **n HX, Jabar B. Boosting thermoelectric performance of Cu2SnSe3 via comprehensive band structure regulation and intensified phonon scattering by multidimensional defects. ACS Nano. 2021;15(6):10532.

    Article  Google Scholar 

  34. Kang SD, Snyder GJ. Transport property analysis method for thermoelectric materials: material quality factor and the effective mass model. 2018. ar**v:1710.06896v2

  35. Kang SD, Snyder GJ. Charge-transport model for conducting polymers. Nature Mater. 2016;16:252.

    Article  Google Scholar 

  36. Vaqueiro P, Gue G, Kaltzoglou A, Smith RI, Barbier T, Guilmeau E, Powell AV. The Influence of mobile copper ions on the glass-like thermal conductivity of copper-rich tetrahedrites. Chem Mater. 2017;29(9):4080.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11874356, 52071041, 12004060, 51972102 and 51877023), the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH016). We would like to thank the Analytical and Testing Center of Chongqing University for assistance with the sample characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or Yong-Ming Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YJ., Peng, KL., Huang, YL. et al. Enhanced thermoelectric performance of Cu2SnSe3 via synergistic effects of Cd-do** and CuGaTe2 alloying. Rare Met. 41, 3466–3474 (2022). https://doi.org/10.1007/s12598-022-02043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02043-9

Keywords

Navigation