Log in

Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

When an equiatomic multi-component alloy is quenched from its molten state down to room temperature, either a solid solution crystalline alloy or a metallic glass is formed. The former is called a high-entropy alloy, whereas the latter is referred as a high-entropy metallic glass (HE-MG). In such multicomponent alloys, thermodynamic parameters, e.g., the mixing entropy, the mixing enthalpy and other parameters such as atomic size mismatch, determine the resulting phases. In this work, we studied the phase selection rule applied to the equiatomic multicomponent Ti20Zr20Hf20Cu20Ni20 HE-MG from a structural perspective, by analyzing the short-to-medium-range orders. It was found that the short-range order in this MG resembles a body-centered cube structure, while the medium-range order is comprised of different orders. The experimental data suggest that different packing schemes, at the medium-range scale, play a critical role in the phase selection rule with regard to an amorphous phase or solid solution.

Graphical abstract

摘要

当多组元合金从熔融态冷却到室温时, 往往形成固溶体合金或金属玻璃。前者被称为高熵合金(HEA), 后者被称为高熵金属玻璃(HE-MG)。在这种多组元合金中, 热力学参数如混合熵、混合焓, 及原子尺寸错配度等其他参数, 决定了最终凝固产物。本文从结构的角度出发, 通过分析短-中程序结构(S-MROs), 研究了等原子多组元Ti20Zr20Hf20Cu20Ni20 高熵金属玻璃的成相规律。研究发现, 该金属玻璃的短程序结构(SRO)类似于体心立方(bcc)结构, 而中程序(MRO)则由不同的排列规律构成。实验数据表明, 在中程序范围内, 不同的排列规律对非晶相或固溶体晶体相的选择规则起着至关重要的作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Naeem M, He HY, Zhang F, Huang HL, Harjo S, Kawasaki T, Wang B, Lan S, Wu ZD, Wang F, Wu Y, Lu ZP, Zhang ZW, Liu CT, Wang XL. Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances. 2020;6(13):4002.

    Article  Google Scholar 

  2. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153.

    Article  CAS  Google Scholar 

  3. Shi PJ, Ren WL, Zheng TX, Ren ZM, Hou XL, Peng JC, Hu PF, Gao YF, Zhong YB, Liaw PK. Enhanced strength-ductility synergy in ultrafinegrained eutectic high-entropy alloys by inheriting microstructural lamellae. Nature Communications. 2019;10(1):489.

    Article  CAS  Google Scholar 

  4. He HY, Naeem M, Zhang F, Yi Lu Zhao, Harjo S, Kawasaki T, Wang B, Wu XL, Lan S, Wu ZD, Wu Y, Lu ZP, Kai JJ, Liu CT, Wang XL. Stacking fault driven phase transformation in CrCoNi medium entropy alloy. Nano Letters. 2021;21(3):1419.

    Article  CAS  Google Scholar 

  5. Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Metals. 2021;40(9):2508.

    Article  Google Scholar 

  6. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Progress in Materials Science. 2014;61:1.

    Article  Google Scholar 

  7. **an X, Zhong ZH, Lin LJ, Zhu ZX, Chen C, Wu YC. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Metals. 2018; https://doi.org/10.1007/s12598-018-1161-4.

    Article  Google Scholar 

  8. Hu YM, Liu XD, Guo NN, Wang L, Su YQ, Guo JJ. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys. Rare Metals. 2019;38(9):840.

    Article  CAS  Google Scholar 

  9. Qin YC, Wang FQ, Wang XM, Wang MW, Zhang WL, An WK, Wang XP, Ren YL, Zheng X, Lu DC. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Metals. 2021;40(9):2354.

    Article  CAS  Google Scholar 

  10. Feng CS, Lu TW, Wang TL, Lin MZ, Hou J, Lu W, Liao WB. A novel high-entropy amorphous thin film with high electrical resistivity and outstanding corrosion resistance. Acta Metallurgica Sinica(English Letters). 2021;34(11):1537.

  11. Chen Y, Dai ZW, Jiang JZ. High entropy metallic glasses: glass formation, crystallization and properties. Journal of Alloys and Compounds. 2021;866(23):158852.

    Article  CAS  Google Scholar 

  12. Gong P, Yin G, Jamili-Shirvan Z, Ding HY, Wang XY, ** JS. Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass. Materials Science & Engineering A. 2020; 797:140078.

    Article  CAS  Google Scholar 

  13. Li CZ, Li Q, Li MC, Chang CT, Li HX, Dong YQ, Sun YF. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties. Journal of Alloys & Compounds. 2019;791(1):947.

    CAS  Google Scholar 

  14. Zhang SY, Gao YY, Zhang ZB, Gu T, Liang XB, Wang LZ. Research progress on functional properties of novel high-entropy metallic-glasses. Chinese Journal of Rare Metals. 2021;45(6):717

    Google Scholar 

  15. Ji LL, Yun XB, Lü YZ. Preparation of Zr50Ti5Cu27Ni10Al8 bulk amorphous alloy by spark plasma sintering. Chinese Journal of Rare Metals. 2020;44(11):1221

    Google Scholar 

  16. Zhao SF, Yang GN, Ding HY, Yao KF. A quinary Ti–Zr–Hf–Be–Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics. 2015;61(1):47.

    Article  CAS  Google Scholar 

  17. Liu Y, Wang HJ, Pang SJ, Zhang T. Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials. Rare Metals. 2020;39(6):688.

    Article  CAS  Google Scholar 

  18. Wang XF, Zhang Y, Qiao Y, Chen GL. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 2007;15(3):357.

    Article  CAS  Google Scholar 

  19. Chen MR, Lin SJ, Yeh JW, Chen SK, Huang YS, Tu CP. Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0–2.0) highentropy alloys. Materials Transactions. 2006;47(5):1395.

  20. Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International. 2011;21(6):433.

    Article  Google Scholar 

  21. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys - ScienceDirect. Materials Chemistry and Physics. 2012;132(2–3):233.

    Article  CAS  Google Scholar 

  22. Lan S, Ren Y, Wei XY, Wang B, Gilbert EP, Shibayama T, Watanabe S, Ohnuma M, Wang XL. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nature Communications. 2017;8(1):14679.

    Article  CAS  Google Scholar 

  23. Kui HW, Greer AL, Turnbull D. Formation of bulk metallic glass by fluxing. Applied Physics Letters. 1984;45(6):615.

    Article  CAS  Google Scholar 

  24. Peker A, Johnson WL. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters. 1993;63(17):2342.

  25. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia. 2000;48(1):279.

    Article  CAS  Google Scholar 

  26. Ma LQ, Wang LM, Zhang T, Inoue A. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys. Materials Transactions. 2002;43(2):277.

    Article  CAS  Google Scholar 

  27. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. materials transactions. 2005;46(12):2817.

    Article  CAS  Google Scholar 

  28. Mattern N, Jóvári P, Kaban I, Gruner S, Elsner A, Kokotin V, Franz H, Beuneu B, Eckert J. Short-range order of Cu–Zr metallic glasses. Journal of Alloys & Compounds. 2009;485(1-2):163.

    Article  CAS  Google Scholar 

  29. Wu ZW, Li MZ, Wang WH, Liu KX. Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nature communications. 2015;1(6):6035.

    Article  Google Scholar 

  30. Liu SN, Wang LF, Ge JC, Wu ZD, Ke YB, Li Q, Sun BA, Feng T, Wu Y, Wang JT, Hahn H, Ren Y, Almer JD, Wang XL, Lan S. Deformationenhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass. Acta Materialia. 2020;200:42.

    Article  CAS  Google Scholar 

  31. Ding J, Ma E. Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids. Npj Computational Mathematics. 2017;3(1):9.

    Article  Google Scholar 

  32. Pan SP, Qin JY, Wang WM, Gu TK. Origin of splitting of the second peak in the pair-distribution function for metallic glasses. Physical Review B. 2011;84(9):92201.

    Article  Google Scholar 

  33. Du JL, Wen B. Composition-structure-property correlations of complex metallic alloys described by the “cluster-plus-glue-atom” model. Applied Materials Today. 2017;7:13.

    Article  Google Scholar 

  34. Li F, Liu XJ, Lu ZP. Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Computational Materials Science. 2014;85:147.

    Article  CAS  Google Scholar 

  35. Antonowiczsupa J, Pietnoczkasupa A, Drobiazgsupa T, Almyrassupb GA, Papageorgiousupc DG, Evangelakissupc GA. Icosahedral order in Cu-Zr amorphous alloys studied by means of X-ray absorption fine structure and molecular dynamics simulations. Philosophical Magazine. 2012;92(15):1865.

    Article  Google Scholar 

  36. Wang XD, Yin S, Cao QP, Jiang JZ, Franz H, ** ZH. Atomic structure of binary Cu64.5Zr35.5 bulk metallic glass. Applied Physics Letters. 2008;92(1):1531.

    Google Scholar 

  37. Peng HL, Li MZ, Wang WH, Wang CZ, Ho KM. Effect of local structures and atomic packing on glass forming ability in CuxZr100-x metallic glasses. Applied Physicsletters. 2010;96(2):021901.1.

    Google Scholar 

  38. Yuan Y, Wu Y, Yang Z, Liang X, Lei ZF, Huang HL, Wang H, Liu XJ, An K, Wu W. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Materials Research Letters. 2019;7(6):225.

    Article  CAS  Google Scholar 

  39. Chen CJ, Wong K, Krishnan RP, Lei ZF, Yu DH, Lu ZP, Chathoth SM. Highly collective atomic transport mechanism in high-entropy glassforming metallic liquids. Journal of Materials Science & Technology. 2019;35(1):44.

    Article  Google Scholar 

  40. Lan S, Zhu L, Wu ZD, Gu L, Zhang QH, Kong HH, Liu JZ, Song RY, Liu SN, Sha G, Wang YG, Liu Q, Liu W, Wang PY, Liu CT, Ren Y, Wang XL. A medium-range structure motif linking amorphous and crystalline states. Nature Materials. 2021;20(10):1347.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2021YFB3802800), the National Natural Science Foundation of China (Nos. 51871120 and 51571170), the Fundamental Research Funds for the Central Universities (Nos. 30919011107 and 30919011404), the Natural Science Foundation of Jiangsu Province (No. BK20200019) and Shenzhen Fundamental Research Program (No. JCYJ20200109105618137). Z.-D. Wu and S. Lan acknowledge the support by Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology. X.-L. Wang acknowledges the support by Shenzhen Science and Technology Innovation Committee (No. JCYJ20170413140446951) and the Ministry of Science and Technology of China (No. 2016YFA0401501). H. Hahn acknowledges the financial support of the Deutsche Forschungsgemeinschaft (No.HA 1344/46-1). This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (No. DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Duo Wu or Si Lan.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, HQ., Liu, SN., Wu, ZD. et al. Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders. Rare Met. 41, 2021–2027 (2022). https://doi.org/10.1007/s12598-022-01973-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01973-8

Navigation