Log in

MgO intercalation and crystallization between epitaxial graphene and Ru(0001)

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

在绝缘基底上制备石墨烯是其在电子学领域实现广泛应用的关键。但是, 直接在介电基底上生长的石墨烯, 存在尺寸和质量方面的限制, 而通过转移石墨烯到绝缘基底上的方法又不适用于大面积工业应用。这篇文章中, 我们报道了一种在大面积、高质量、单层石墨烯与金属单晶基底之间实现晶态氧化镁介电插层的方法。镁和氧分步插层在石墨烯/Ru(0001)的界面处, 在高温下形成晶态氧化镁。石墨烯/氧化镁/Ru(0001)样品用低能电子衍射(LEED)、扫描隧道显微镜(STM)、X射线光电子能谱(XPS)和扫描透射电子显微镜(STEM)进行了表征。LEED衍射图案给出了晶态氧化镁的结构, STM证明了顶层的石墨烯依旧完整。氧化镁插层样品的STEM表征证明插入层的厚度可达2.3 nm, 而且晶态氧化镁的结构为岩盐结构的氧化镁, 其面外取向为[001]。这一工作提供了一种在高介电常数绝缘体上制备石墨烯的新途径, 在未来的电子学中可能具有潜在的应用。

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA. 2005;102(30):10451.

    Article  CAS  Google Scholar 

  3. Su CY, Lu AY, Xu YP, Chen FR, Khlobystov AN, Li LJ. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano. 2011;5(3):2332.

    Article  CAS  Google Scholar 

  4. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312.

    Article  CAS  Google Scholar 

  5. Chen XD, Liu ZB, Zheng CY, **ng F, Yan XQ, Chen YS, Tian JG. High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon. 2013;56:271.

    Article  CAS  Google Scholar 

  6. Yan C, Cho JH, Ahn JH. Graphene-based flexible and stretchable thin film transistors. Nanoscale. 2012;4(16):4870.

    Article  CAS  Google Scholar 

  7. Wang DY, Huang IS, Ho PH, Li SS, Yeh YC, Wang DW, Chen WL, Lee YY, Chang YM, Chen CC, Liang CT, Chen CW. Clean-lifting transfer of large-area residual-free graphene films. Adv Mater. 2013;25(32):4521.

    Article  CAS  Google Scholar 

  8. Pan GH, Li B, Heath M, Horsell D, Wears ML, Al Taan L, Alwan S. Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films. Carbon. 2013;65:349.

    Article  CAS  Google Scholar 

  9. Yang W, Chen GR, Shi ZW, Liu CC, Zhang LC, **e GB, Cheng M, Wang DM, Yang R, Shi DX, Watanabe K, Taniguchi T, Yao YG, Zhang YB, Zhang GY. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater. 2013;12(9):792.

    Article  CAS  Google Scholar 

  10. Lippert G, Dabrowski J, Lemme M, Marcus C, Seifarth O, Lupina G. Direct graphene growth on insulator. Phys Status Solidi B. 2011;248(11):2619.

    Article  CAS  Google Scholar 

  11. Wei DP, Mitchell JI, Tansarawiput C, Nam W, Qi MH, Ye PD, Xu XF. Laser direct synthesis of graphene on quartz. Carbon. 2013;53:374.

    Article  CAS  Google Scholar 

  12. Rummeli MH, Bachmatiuk A, Scott A, Borrnert F, Warner JH, Hoffman V, Lin JH, Cuniberti G, Buchner B. Direct low-temperature nanographene cvd synthesis over a dielectric insulator. ACS Nano. 2010;4(7):4206.

    Article  Google Scholar 

  13. Guo H, Chen H, Que YD, Zheng Q, Zhang YY, Bao LH, Huang L, Wang YL, Du SX, Gao HJ. Low-temperature growth of large-scale, single-crystalline graphene on Ir(111). Chin Phys B. 2019;28(5):056107.

    Article  CAS  Google Scholar 

  14. Pan Y, Zhang HG, Shi DX, Sun JT, Du SX, Liu F, Gao HJ. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv Mater. 2009;21(27):2777.

    Article  CAS  Google Scholar 

  15. Xu XZ, Zhang ZH, Dong JC, Yi D, Niu JJ, Wu MH, Lin L, Yin RK, Li MQ, Zhou JY, Wang SX, Sun JL, Duan XJ, Gao P, Jiang Y, Wu XS, Peng HL, Ruoff RS, Liu ZF, Yu DP, Wang EG, Ding F, Liu KH. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull. 2017;62(15):1074.

    Article  CAS  Google Scholar 

  16. Huang L, Pan Y, Pan LD, Gao M, Xu WY, Que YD, Zhou HT, Wang YL, Du SX, Gao HJ. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl Phys Lett. 2011;99(16):163107.

    Article  Google Scholar 

  17. Mao JH, Huang L, Pan Y, Gao M, He JF, Zhou HT, Guo HM, Tian Y, Zou Q, Zhang LZ, Zhang HG, Wang YL, Du SX, Zhou XJ, Castro Neto AH, Gao HJ. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl Phys Lett. 2012;100(9):093101.

    Article  Google Scholar 

  18. Li LF, Wang YL, Meng L, Wu RT, Gao HJ. Hafnium intercalation between epitaxial graphene and Ir(111) substrate. Appl Phys Lett. 2013;102(9):093106.

    Article  Google Scholar 

  19. Fei XM, Zhang LZ, **ao WD, Chen H, Que YD, Liu LW, Yang K, Du SX, Gao HJ. Structural and electronic properties of Pb—intercalated graphene on Ru(0001). J Phys Chem C. 2015;119(18):9839.

    Article  CAS  Google Scholar 

  20. Enderlein C, Kim YS, Bostwick A, Rotenberg E, Horn K. The formation of an energy gap in graphene on ruthenium by controlling the interface. New J Phys. 2010;12(3):033014.

    Article  Google Scholar 

  21. Lizzit S, Larciprete R, Lacovig P, Dalmiglio M, Orlando F, Baraldi A, Gammelgaard L, Barreto L, Bianchi M, Perkins E, Hofmann P. Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett. 2012;12(9):4503.

    Article  CAS  Google Scholar 

  22. Wang XY, Guo H, Lu JC, Lu HL, Lin X, Shen CM, Bao LH, Du SX, Gao HJ. Intercalation of germanium oxide beneath large-area and highquality epitaxial graphene on Ir(111) substrate. Chin Phys B. 2021;30(4):048102.

    Article  CAS  Google Scholar 

  23. Omiciuolo L, Hernandez ER, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş TO, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A. Bottom-up approach for the low-cost synthesis of graphene-alumina nanosheet interfaces using bimetallic alloys. Nat Commun. 2014;5(1):5062.

    Article  CAS  Google Scholar 

  24. Liu YP, Idzuchi H, Fukuma Y, Rousseau O, Otani Y, Lew WS. Spin injection properties in trilayer graphene lateral spin valves. Appl Phys Lett. 2013;102(3):033105.

    Article  Google Scholar 

  25. Herranz T, Santos B, McCarty KF, de la Figuera J. Real-space study of the growth of magnesium on ruthenium. Surf Sci. 2011;605(9):903.

    Article  CAS  Google Scholar 

  26. Sutter P, Sadowski JT, Sutter EA. Chemistry under cover: tuning metal-graphene interaction by reactive intercalation. J Am Chem Soc. 2010;132(23):8175.

    Article  CAS  Google Scholar 

  27. Urano T, Kanaji T. Surface structure of MgO(001) surface studied by LEED. Surf Sci. 1983;134(1):109.

    Article  CAS  Google Scholar 

  28. Ahmad SS, He W, Zhang YS, Tang J, Gul Q, Zhang XQ, Cheng ZH. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001) substrate. AIP Adv. 2016;6(11):115101.

    Article  Google Scholar 

  29. Ma YC, Lehtinen PO, Foster AS, Nieminen RM. Magnetic properties of vacancies in graphene and single-walled carbon nanotubes. New J Phys. 2004;6:68.

    Article  Google Scholar 

  30. Mao JH, Jiang YH, Moldovan D, Li GH, Watanabe K, Taniguchi T, Masir MR, Peeters FM, Andrei EY. Realization of a tunable artificial atom at a supercritically charged vacancy in graphene. Nat Phys. 2016;12(6):545.

    Article  CAS  Google Scholar 

  31. Li J, Jiang YZ, Li Y, Yang DR, Xu YB, Yan M. Origin of room temperature ferromagnetism in MgO films. Appl Phys Lett. 2013;102(7):072406.

    Article  Google Scholar 

  32. Asami K, Ono S. Quantitative X-ray photoelectron spectroscopy characterization of magnesium oxidized in air. J Electrochem Soc. 2000;147(4):1408.

    Article  CAS  Google Scholar 

  33. Chambers SA, Tran TT. Core-level binding energies and photoelectron diffraction in cleaved and homoepitaxial MgO(100). Surf Sci Spectra. 1998;5(3):203.

    Article  CAS  Google Scholar 

  34. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature. 2007;448(7153):571.

    Article  CAS  Google Scholar 

  35. Wang WH, Pi K, Li Y, Chiang YF, Wei P, Shi J, Kawakami RK. Magnetotransport properties of mesoscopic graphite spin valves. Phys Rev B. 2008;77(2):020402.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research & Development Program of China (Nos. 2019YFA0308500, 2018YFA0305800 and 2016YFA0202300), the National Natural Science Foundation of China (Nos. 61888102 and 61925111), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB30000000 and XDB28000000), and the CAS Key Laboratory of Vacuum Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Liang Lu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1484 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Guo, H., Shi, JA. et al. MgO intercalation and crystallization between epitaxial graphene and Ru(0001). Rare Met. 41, 304–310 (2022). https://doi.org/10.1007/s12598-021-01792-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01792-3

Navigation