Log in

Microstructural refinement and performance improvement of Cu–36 wt% Zn alloy by Al2O3 nanoparticles coupling electromagnetic stirring

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cu–36 wt% Zn alloy is widely used in valves of water and heating and auto parts, etc. Nevertheless, the structure is still coarse, and performances are much poor. The structure and performances of Cu–36 wt% Zn alloy were investigated by adding Al2O3 nanoparticles and stirring. Results indicate that by Al2O3 nanoparticles coupling electromagnetic stirring, the Cu–36 wt% Zn alloy with refined microstructure was successfully prepared. The average grain size is refined by 99 % compared with that without nanoparticles and stirring. The tensile strength (Rm) and percentage elongation after fracture (A11.3) increase by 20.58 % and 19.40 %, respectively, compared with that without nanoparticles and stirring. Nanoparticles increase heterogeneous nucleation rate by 50 % compared with that without nanoparticles. The depth of dezincification layer decreases by 78.71 % compared with that without nanoparticles and stirring, as protective layer (Cu–Al2O3–Zn) is completely formed around the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang ZJ, Zhang TL. Research and development of free-cutting nonleaded brass rod. Nonferrous Met Process. 2004;33(6):10.

    Google Scholar 

  2. Kobayashi T. Strength and fracture of aluminum alloys. Mater Sci Eng. 2000;280(1):8.

    Article  Google Scholar 

  3. Zhang AS, Xu P. Refinement and metamorphism of HPb59-1 brass by trace boron. Tech Hot Work. 2005;89(7):22.

    Google Scholar 

  4. Cao YQ. Application of high melting point elements Fe and Ni in casting brass. Foundry Tech. 2004;7:563.

    Google Scholar 

  5. Gan FX, Guo H, Yao L. Mechanism of arsenic inhibition dezincification in brass. Chin J Corros Prot. 1991;11(1):75.

    Google Scholar 

  6. Zhao HF, Dai WG, Ding JY. Effects of heat treatment on dezincification corrosion properties of C46500 brass. Shanghai Non Met. 2014;35(1):24.

    Google Scholar 

  7. Han QY, Ludtka G, Zhai QJ. Materials Processing under the Influence of External Fields. New Jersey: Wiley Press; 2007. 20.

    Google Scholar 

  8. Zi BT, Ba QX, Cui JZ, Xu GM. Study on axial changes of as- cast structures of Al alloy sample treated by the novel SPMF technique. Script Mater. 2000;43(3):377.

    Google Scholar 

  9. Yan ZM, Li XT, Cao ZQ, Zhang XL, Li TJ. Grain refinement of horizontal continuous casting of the CuNi10Fe1Mn alloy hollow billets by rotating magnetic field (RMF). Mater Lett. 2008;62(28):4389.

    Article  CAS  Google Scholar 

  10. Ma XP, Li YJ, Yang YS. Influence of pulsed magnetic field on microstructures and macro-segregation in 2124 Al-alloy. J Mater Res. 2009;24(8):2670.

    Article  CAS  Google Scholar 

  11. Fu Y, Park J, Wang TM, Kim J, Cao ZQ, Li TJ. Modification of solidification structure under DC pulse magnetic field. J Iron Steel Res Int. 2012;S1:226.

    Google Scholar 

  12. Chen Z, Wang T, Gao L, Fu H, Li T. Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al-B master alloy. Mater Sci Eng A. 2012;553:32.

    Article  CAS  Google Scholar 

  13. Zhu J, Wang T, Cao F, Huang W, Fu H, Chen Z. Real time observation of equiaxed growth of Sn-Pb alloy under an applied direct current by synchrotron microradiography. Mater Lett. 2012;89:137.

    Article  CAS  Google Scholar 

  14. Brush LN, Richard N. The effect of an electric on rod-eutectic solidification in Sn–0.9 wt% Cu alloys. Mater Sci Eng A. 1997;238(1):176.

    Article  Google Scholar 

  15. Rodriguez JM, Esteva A, Meza S. A note on the control of the solidification front in the continuous casting of copper tubes. J Mate Proc Tech. 1999;96(1–3):42.

    Article  Google Scholar 

  16. Li XT, Zhao XW, Wei B, Chen FB, Yan ZM, Li TJ. Effect of rotating electromagnetic field on solidification structures and mechanical properties of tube billets of BFe10-1-1 alloy. Chin J Non Met. 2007;17(6):922.

    CAS  Google Scholar 

  17. Yan Z, Liu H, Li T, Zhang X, Cao Z. Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets. Mater Des. 2009;30(4):1245.

    Article  CAS  Google Scholar 

  18. Song KX, Liu P, Tian BH. Stabilization of nano-Al2O3p/Cu composite after high temperature annealing treatment. Mater Sci Forum. 2005;475–479:993.

    Article  Google Scholar 

  19. Chen ML, Kang L, Yang J, Yang L, Gao H. Microstructure and mechanical properties of reinforced cast aluminum bronze by modified nano-SiC powder. Foundry. 2008;57(4):330.

    CAS  Google Scholar 

  20. Flemings MC. Solidification processing. Metall Trans. 1974;5(10):2121.

    Article  CAS  Google Scholar 

  21. Liu LZ, Ying GB, Zhu J, Lin H, Zhu CC. High-temperature compressive properties of TiC–TiB2Cu composites prepared by self-propagating high-temperature synthesis. Rare Met. 2014;33(1):95.

    Article  Google Scholar 

  22. Kurz W, Fisher DJ. Fundamentals of Solidification. 3rd ed. Switzerland: Trans Tech Publications Ltd; 1992. 71.

    Google Scholar 

  23. Chalmers B. Principles of Solidification. New York: Wiley; 1964. 6.

    Google Scholar 

  24. Li J, Ma JH, Gao YL, Zhai QJ. Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes. Mater Sci Eng A. 2008;490(1–2):452.

    Article  Google Scholar 

  25. Zhou BL. Some non-equilibrium thermo physical problems to be studied in materials processing. Mater Sci Eng A. 2000;292(2):133.

    Article  Google Scholar 

  26. Liao X, Zhai Q, Luo J, Chen W, Gong Y. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater. 2007;55(9):3103.

    Article  CAS  Google Scholar 

  27. Suda M, Iwai K, Asai S. Ultra-high-strength bainitic steels. ISIJ Int. 2005;45(11):1736.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51571160), the Fundamental Research Fund for Taizhou Science and Technology (No. 131KY02), the Public Welfare Projects of Science and Technology Department of Zhejiang Province (No. 2015C31143), and the Pivot Innovation Team of Shaanxi Electric Materials and Infiltration Technique (No. 15JS071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Bo Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YB., Lu, YP., Wang, ZJ. et al. Microstructural refinement and performance improvement of Cu–36 wt% Zn alloy by Al2O3 nanoparticles coupling electromagnetic stirring. Rare Met. 41, 3560–3565 (2022). https://doi.org/10.1007/s12598-016-0723-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0723-6

Keywords

Navigation