Log in

Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacings of primary and secondary dendrite arms decrease, and the dendrite morphologies transit from coarse to superfine dendrite. The secondary dendrite arms trend to be refined and be well developed, and the tertiary dendrite will occur. The predictions of the Kurz/Fisher model and the Hunt/Lu model accord basically with the experimental data for primary dendrite arm spacing. The regression equation of the primary dendrite arm spacings λ1 and the cooling rate V c is λ1 = 0.013V −0.32c . The regression equation of the secondary dendrite arm spacing λ2 and the cooling rate V c is λ2 = 0.00258V −0.31c , which gives good agreement with the Feurer/Wunderlin model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarazin J.R. and Hellawell A., A channel formation in Pb-Sn-Sb alloys ingots and comparison with the system NH4Cl-H2O, Metall. Trans. A, 1988, 19: 1861.

    Article  Google Scholar 

  2. Tewari S.N. and Shah R., Macrosegregation during dendritic arrayed growth of hypoeutectic Pb-Sn alloys, Metall. Mater. Trans. A, 1996, 27: 1353.

    Article  Google Scholar 

  3. Pollock T.M. and Murphy W.H., The breakdown of single-crystal solidification in high refractory nickel-base alloys, Metall. Mater. Trans. A, 1996, 27: 1081.

    Article  Google Scholar 

  4. Liu Y., Yu J.J., Xu Y., Sun X.F., Guan H.R., and Hu Z.Q., Crack growth behavior of SRR99 single superalloy under thermal fatigue, Rare Met., 2008, 27(5): 526.

    Article  CAS  Google Scholar 

  5. **a P.C., Yu J.J, Sun X.F., Guan H.R., and Hu Z.Q., Influence of heat treatment on the microstructure and mechanical properties of DZ951 alloy, Rare Met., 2008, 27(2): 216.

    Article  CAS  Google Scholar 

  6. Hunt J.D., Cellular and primary dendrite spacings, [in] Proceedings of International Conference on Solidification and Casting of Metal, London, 1979: 3.

  7. Kurz W. and Fisher J.D., Dendrite growth at the limit of stability: tip radius and spacing, Acta Metall., 1981, 29: 11.

    Article  CAS  Google Scholar 

  8. Langer J.S. and Muller-Krumbhaar H., Stability effect in dendritic crystal growth, J. Cryst. Growth, 1977, 42: 11.

    Article  CAS  ADS  Google Scholar 

  9. Hunt J.D. and Lu. S.Z., Numerical modeling of cellular/dendritic array growth: spacing and structure predictions, Metall. Trans. A, 1996, 27: 611.

    Article  Google Scholar 

  10. Lu S.Z. and Hunt J.D., A numerical analysis of dendritic and cellular array growth: the spacing adjustment mechanisms, J. Cryst. Growth, 1992, 123: 17.

    Article  ADS  Google Scholar 

  11. Ma D. and Sahm P., Primary spacing in directional solidification, Metall. Mater. Trans. A, 1998, 29: 1113.

    Google Scholar 

  12. Feurer U. and Wunderlin R., Fundamentals of Solidification, Trans. Tech. Publications Ltd., Aedermannsdorf, Switzerland, 1986, Appendix 8: 214.

    Google Scholar 

  13. Kirkwood D.H., A simple model for dendritic arm coarsening during solidification, Mater. Sci. Eng. A, 1985, 73: L1.

    Article  CAS  Google Scholar 

  14. Su R.J., Overfelt R.A., and Jemian W.A., Microstructural and compositional transients during accelerated directional solidification of Al-4.5 wt.% Cu, Metall. Mater. Trans. A, 1998, 29: 2375.

    Article  Google Scholar 

  15. Su R.J., Jemian W.A., and Overfelt R.A., Transient effects in the directional solidification of Al-Cu alloys, J. Cryst. Growth, 1997, 179: 625.

    Article  CAS  ADS  Google Scholar 

  16. Han S.H. and Trivedi R., Primary spacing selection in directionally solidified alloys, Acta Metall. Mater., 1994, 42: 25.

    Article  CAS  Google Scholar 

  17. Eshelman M.B., Seetharaman V., and Trivedi R., Cellular spacings I: Steady-state growth, Acta Metall. Mater., 1988, 36: 1165.

    Article  CAS  Google Scholar 

  18. Bouchard D. and Kirkaldy J.S., Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys, Metall. Mater. Trans. B, 1997, 28: 651.

    Article  Google Scholar 

  19. Li L. and Overfelt R.A., Influence of directional solidification variables on the cellular and primary dendrite arm spacings of PWA 1484, J. Mater. Sci., 2002, 37: 3521.

    Article  CAS  Google Scholar 

  20. Kurz W. and Fisher D.J., Fundamentals of Solidification, Trans. Tech. Publications Co., Switzerland, 1992: 65.

    Google Scholar 

  21. Langer J.S. and Muller-Krumbhaar H., Stability effects in dendritic crystal growth, J. Cryst. Growth, 1977, 42: 11.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Liu, L., Zhao, X. et al. Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Metals 28, 633–638 (2009). https://doi.org/10.1007/s12598-009-0121-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0121-4

Keywords

Navigation