Log in

Effect of fluorescein dye on optical and thermal properties of sulphamic acid single crystals

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optically transparent single crystals of sulphamic acid (SA) and Fluorescein dye doped crystals with 0.1 mol % (SFL1) and 0.3 mol% (SFL3) are generated using the slow evaporation solution approach. The unit cell characteristics of the crystal that were generated were determined using single-crystal X-ray diffraction. The single crystal X-ray diffraction (XRD) analysis indicates that the crystal formed has an orthorhombic structure. The space group has been determined to be Pbca. Cell volume is found to increase as do** concentrations increased. The identification and allocation of functional groups were accomplished using FTIR and Raman spectroscopy. A little augmentation in the lattice parameter was detected in the single crystal X-ray diffraction (SCXRD) analysis. FTIR and Raman spectra exhibited minor shifts in peak positions and change in intensity. The optical quality of the generated crystals has been assessed by UV-visible examinations, which have confirmed that the developed crystals exhibit a decreased cut-off wavelength at 266, 263, and 261 nm, respectively. These crystals has lower cutoff wavelength which shows that these are the preferable material for many optical applications. The optical band gap values are determined to be 5.13 eV, 5.2 eV, and 5.14 eV from tauc relation, respectively. It was observed that doped crystals exhibited a substantial enhancement in thermal stability and decomposition temperature. The enhanced optical characteristics and heightened thermal durability of the doped crystals underscore its suitability for optoelectronic applications and also for optical switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Raja, S. Seshadri, R.R. Saravanan, Crystal growth, spectral, thermal and optical properties of an organic single crystal – Dye doped hippuric acid. Optik. 125(3), 916–919 (2014). https://doi.org/10.1016/j.ijleo.2013.05.193

  2. S. Zongo, K. Sanusi, J. Britton, P. Mthunzi, T. Nyokung, M. Maaza, B. Saharaoui, Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique. J. Opt. Mater. 46, 270–275 (2015). https://doi.org/10.1016/j.optmat.2015.04.031

  3. N. Indumathi, K. Deepa, J. Madhavan, S. Senthil, Growth and characterization of sulphamic acid lithium chloride single crystal. Der Pharma Chem. 9(15), 121–125 (2017). http://www.derpharmachemica.com/archive.html

  4. J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan, P. Ramasamy, Crystal growth, optical, thermal, mechanical and third-order nonlinear optical properties of L-lysine hydrochloride-doped sulphamic acid single crystals for optical applications. Appl. Phys. A. 126, 888 (2020). https://doi.org/10.1007/s00339-020-04077-1

  5. R. Kumar, N. Vijayan, N. Khan, M. Sonia, M. Kumari, R. Jewariya, Srivastava, Sulphamic acid: potential single crystal for nonlinear optical applications. J. Mater. Sci. Mater. Electro. 31, 14271–1427 (2020). https://doi.org/10.1007/s10854-020-03983-7

  6. R. Rajkumar, P.P. kumar, Structure, crystal growth and characterization of piperazinium bis(4-nitrobenzoate) dihydrate crystal for nonlinear optics and optical limiting applications. J. Mol. Struct. 1179, 108–117 (2019). https://doi.org/10.1016/j.molstruc.2018.10.085

  7. S. Prince ·, T. Suthan, C. Gnanasambandam, Growth and characterization of organic 2,4-dinitroaniline single crystals for optical applications. J. Electron. Mater. 51, 1639–1652 (2022). https://doi.org/10.1007/s11664-022-09428-7

  8. P. Baskaran, M. Vimalan, P. Anandan, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, Synthesis, growth and characterization of a nonlinear optical crystal: l-Leucinium perchlorate. J. Taibah Univ. Sci. 11(1), 11–17 (2018). https://doi.org/10.1016/j.jtusci.2016.03.003

    Article  Google Scholar 

  9. S. Dinagaran, J. Gajendiran, S. Gokul Raj, S. Gnanam, Study of crystalline growth, structural characteristics, optical behavior, thermo and dielectric properties of isoniazid single crystal. Opt. Laser Tech. 156, 108576 (2022). https://doi.org/10.1016/j.optlastec.2022.108576

    Article  Google Scholar 

  10. M.I. Baig, M. Anis, G.G. Muley, Influence of tartaric acid on linear-nonlinear optical and electrical properties of KH2PO4 crystal. Opt. Mater. 72, 1–7 (2017). https://doi.org/10.1016/j.optmat.2017.05.042

    Article  Google Scholar 

  11. R. Valluan, K. Selvaraju, S. Kumararaman, Growth and characterization of sulphamic acid single crystals: A nonlinear optical material. J. Mat. Chem. Phys. 97(1), 81–84 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.063

  12. P.N. Prasad, D.J. Williams, Introduction to non-linear optical effects in molecules and polymers, vol. 1 (Wiley, New York, 1991)

    Google Scholar 

  13. I.S. Steinberg, A.V. kirpichnikov, V.V. Atuchinm, Two-photon absorption in undoped LiTaO3 crystals. J. Opt. Mater. (Amst). 78, 253–258 (2018). https://doi.org/10.1016/j.optmat.2017.11.025

  14. C.V. Ramana, V.V. Atuchin, U. Becker, R.C. Ewing, L.I. Isaenko, O.Y. Khyzhun, A.A. Merkulov, L.D. Pokrovsky, A.K. sinelnichenko, S.A. Zhurkov, Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces. J. Phys. Chem. C 111, 2702–2708 (2007). https://doi.org/10.1021/jp0671392

  15. N.G. Korobeishchikov, I.V. Nikolaev, V.V. Atuchin, I.P. Prosvirin, A. Tolstogouzov, V. Pelenovich, D.J. Fu, Borate nonlinear optical single crystal surface finishing by argon cluster ion sputtering. J. Surf. Interfaces. 27, 101520 (2021). https://doi.org/10.1016/j.surfin.2021.101520

  16. M. B.Singh, S. Shkir, A. AlFaify, N. Kaushal, I. Nasani, H. Bdikin, I.S. Shoukry, H. Yahia, Algarni, Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) do**. J. Mol. Struct. 1119, 365–372 (2016). https://doi.org/10.1016/j.molstruc.2016.04.091

    Article  Google Scholar 

  17. V. Ganesh, T. Bhaskar Rao, K. Kishan Rao, G. Bhagavannarayana, M. Shkir, Effect of l-alanine, Mn(II) and glycine dopants on the structural, crystalline perfection, second harmonic generation (SHG), dielectric and mechanical properties of BTCA single crystals. J. Mater. Chem. Phys. 137(1), 276–281 (2012). https://doi.org/10.1016/j.matchemphys.2012.09.021

    Article  Google Scholar 

  18. S. Mary Delphine, A.R.S. Janci Rani Juliet, S. Janarathanan, R. Sugaraj, Samuel, Study on growth, spectral, optical and thermal characterization of an NLO crystal: 6-Methyl nicotinic acid (6MNA). Opt. Laser Technol. 90, 133–135 (2017). https://doi.org/10.1016/j.optlastec.2016.11.013

  19. G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, A. Savage, LiNbO3: An efficient phase matchable nonlinear optical material. J. Appl. Phys. Lett. 5, 234–236 (1964). https://doi.org/10.1063/1.1723604

  20. T. Thaila, S. Kumararaman, Effect of NaCl and KCl do** on the growth of sulphamic acid crystals. Spectrochim Acta A. 82(1), 20–24 (2011). https://doi.org/10.1016/j.saa.2011.06.004

  21. J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan, P. Ramasamy, Crystal growth, optical, thermal, laser damage threshold, photoconductivity and third-order nonlinear optical studies of KCl doped sulphamic acid single crystals. J. Mater. Sci. Mater. Electron. 31, 6084–6096 (2020). https://doi.org/10.1007/s10854-020-03161-9

  22. S. Goel, N. Sinha, A. Hussain, A.J. Joseph, H. Yadav, B. Kumar, Sunset yellow dyed triglycine sulfate single crystals: enhanced thermal, mechanical, optical and di-/piezo-/ferro-/pyro-electric properties. J. Mater. Sci. 29, 13449–13463 (2018). https://doi.org/10.1007/s10854-018-9470-9

    Article  Google Scholar 

  23. J. Arumugam, N. Suresh, M. Selvapandiyan, S. Sudhakar, M. Prasath, Effect of NaCl on the properties of sulphamic acid single crystals. Heliyon. 5(7), E01988 (2019). https://doi.org/10.1016/j.heliyon.2019.e01988

  24. C.P. Sahana, P.R. Deepthi, M. Challa, Exploring the influence of FeSO4 on the structural and thermal properties of sulphamic acid single crystals. Iran. J. Sci. 47, 275–283 (2023). https://doi.org/10.1007/s40995-022-01407-1

  25. G. Sudhakar, D. Rajan Babu, Influence of Sm do** on the optical, mechanical, electrical, thermal and z-scan analysis of sulphamic acid single crystal for nonlinear optical device applications. J. Mater. Sci. Mater. Electron. 34, 2153 (2023). https://doi.org/10.1007/s10854-023-11503-6

  26. B. Brahmaji, S. Rajyalakshmi, C. SatyaKamal, V. Atla, V. Veeraiah, K. Venkateswara Rao, K. Ramachandra Rao, Optical emissions of Ce3+ doped Sulphamic acid single crystals by low temperature unidirectional growth technique. Opt. Mater. 64, 100–105 (2017). https://doi.org/10.1016/j.optmat.2016.11.040

  27. N. Renuka, R.R. babu, N. Vijayan, P. Baskaran, Effect of dyes on the growth, structural, morphological, optical, mechanical and dielectric properties of Sulphamic acid single crystal. Adv. Sci. Eng. Techn. (2022). https://doi.org/10.1109/ASET53988.2022.9735054

    Article  Google Scholar 

  28. I.M. Pritula, Y.N. Velikhov, A.N. Levchenko, M.I. Kolybayeva, V.M. Puzikov, V.B. Tyutyunnik, A.O. Doroshenko, Effect of organic dye on the growth and optical properties of KDP. J. Funct. Mater. 11 (2004). https://www.researchgate.net/publication/311846217_Effect_of_organic_dye_on_the_growth_and_optical_properties_of_KDP?enrichId=rgreq-d5ce9c397a6deb578ce2b7068ecf80bd-XXX&enrichSource=Y292ZXJQYWdlOzMxMTg0NjIxNztBUzo0NDM4NzcyMjUxNzcwODlAMTQ4MjgzOTk4NTIwNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf

  29. C.P. Sahana, P.R. Deepthi, P. Mohan Kumar, A. Sukhdev, M. Challa, Methyl orange doped sulphamic acid single crystals: growth, optical and thermal properties for optoelectronic applications. J. Shanthi, Braz J. Phys. 52, 98 (2022). https://doi.org/10.1007/s13538-022-01104-9

    Article  Google Scholar 

  30. R. Saini, D. Joseph, J. Mat, Optical and thermal properties of rhodamine B dye-doped sulphamic acid single crystals. Sci. Mater. Electron. 35, 761 (2024). https://doi.org/10.1007/s10854-024-12552-1

    Article  Google Scholar 

  31. J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan, P. Ramasamy, P. Karupasamy, Optical, thermal and nonlinear optical properties of amaranth dye-doped sulphamic acid single crystals. J. Mater. Sci. Mater. Electron. 31, 13173–13185 (2020). https://doi.org/10.1007/s10854-020-03869-8

  32. H.M. Mistry, M.P. Deshpande, A.B. Hirpara, N.M. Suchak, S.H. Chaki, S.V. Bhatt, Bias-switchable photoconductance in surface-modified graphene oxide by green synthesized ZnO nanoparticles. J. Alloys Compd. 969, 172328 (2023). https://doi.org/10.1016/j.jallcom.2023.172328

  33. H.M. Mistry, M.P. Deshpande, A.B. Hirpara, N.M. Suchak, S.H. Chaki, S. Pandya, J. Valand, S.V. Bhatt, Photoresponse of surface modified graphene oxide by green synthesized silver and gold nanoparticles. J. App Surf. Sci. 632, 157583 (2023). https://doi.org/10.1016/j.apsusc.2023.157583

    Article  Google Scholar 

  34. M. Lenin, N. Balamurugan, P. Ramasamy, Growth and characterization of sulphamic acid single crystals grown by Sanakaranarayanan‐Ramasamy (SR) method. J. Cryst. Res. Technol. 42(1), 39–43 (2007). https://www.researchgate.net/publication/230237183

  35. C.P. Sahana, P.R. Deepthi, P. Mohan Kumar, A. Sukhdev, M. Challa, P. Bhaskar, J. Shanthi, Dye doped sulphamic acid crystals: a potential material for optoelectronic applications. J. Mat. Sci. Mater. Electron. 33, 11184–11193 (2022). https://doi.org/10.1007/s10854-022-08094-z

  36. Z. Li, P. Zhu, Y. chen, N. Ji, J. Liu, X. Duan, H. Jiang, Single crystal structure and optical properties of nonlinear optical crystal Rb0.94Ti0.94Ta0.06OPO4. CrystEngcomm. 21, 1570–1578 (2019). https://doi.org/10.1039/C8CE01724G

  37. P.V. Dhanraj, N.P. Rajesh, Growth and characterization of nonlinear optical γ-glycine single crystal from lithium acetate as solvent. J. Mater. Chem. Phys. 115(1), 413–417 (2009). https://doi.org/10.1016/j.matchemphys.2008.12.012

    Article  Google Scholar 

  38. A.B. Hirpara, S.H. Chaki, R.M. Kannaujiya, A.J. khimani, Z.R. Parekh, Y. H.Vaidya, R.K. Giri, M.P. Deshpande, Biological investigation of sonochemically synthesized CZTS nanoparticles. J. Appl. Surf. Sci. Adv. 12, 100338 (2022). https://doi.org/10.1016/j.apsadv.2022.100338

  39. A.B. Hirpara, S.H. chaki, R.M. Kannaujiya, M.P. Deshpande, Photoresponse application of the dip-coated Cu2ZnSnS4 thin film. J. Appl. Phys. A. 129, 226 (2023). https://doi.org/10.1007/s00339-023-06507-2

  40. D. Kalaiselvi, R. Mohankumar, R. Jayavel, Growth and characterization of nonlinear optical l-arginine maleate dihydrate single crystals. J. Mater. Lett. 62(4-5), 755–758 (2008). https://doi.org/10.1016/j.matlet.2007.06.054

  41. J. Arumugam, M. Selvapandiyan, S. Chandran, M. Srinivasan, P. Ramasamy, Effect of MgSO4 on sulphamic acid single crystals and their structural, optical, mechanical, thermal and third order nonlinear optical studies. J. Mater. Chem. Phys. 242, 122479 (2020). https://doi.org/10.1016/j.matchemphys.2019.122479

  42. S. Bhandari, N. Sinha, G. Ray, B. Kumar, Enhanced optical, dielectric and piezoelectric behavior in dye doped zinc tris-thiourea sulphate (ZTS) single crystals. J. Chem. Phys. Lett. 591, 10–15 (2014). https://doi.org/10.1016/J.CPLETT.2013.11.007

  43. T. Prasanyaa, M. Haris, V. Mathivanan, M. Senthilkumar, T. Mahalingam, V. Jayaramakrishnan, Synthesis and characterization of pure, urea and thiourea doped organic NLO l-arginine trifluoroacetate single crystals. J. Mater. Chem. Phys. 147(3), 433–438 (2014). https://doi.org/10.1016/j.matchemphys.2014.05.011

Download references

Acknowledgements

The authors are thankful to UGC for JRF fellowship. Thanks to Department of Chemistry, Punjab university for SCXRD.Thanks to CIL, GJUS&T for recording FTIR and Raman spectra and MNIT (MRC) Jaipur for UV-Visible and TGA-DTA.

Author information

Authors and Affiliations

Authors

Contributions

RS: conceptualization, investigation, methodology, formal analysis, writing original draft. DJ: conceptualization, methodology, validation, writing-review and editing, supervision.

.

Corresponding author

Correspondence to David Joseph.

Ethics declarations

Ethical approval

The article does not contain any study involving any humans and animals performed by any author.

Conflict of interest

The corresponding author declares that there is no conflict of interest on behalf of all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R., Joseph, D. Effect of fluorescein dye on optical and thermal properties of sulphamic acid single crystals. J Opt (2024). https://doi.org/10.1007/s12596-024-01975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01975-y

Keywords

Navigation