Log in

Propagation characters of dark and antidark Gaussian laser beams in collisionless magnetized plasma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Theoretical investigation of propagation dynamics of dark and antidark Gaussian (DADG) laser beams in magnetized plasma has been presented. Main source of nonlinearity in dielectric constant of magnetized plasma considered herein is of ponderomotive type. Parabolic equation approach under WKB and paraxial approximations has been used to obtain nonlinear differential equation for beam-width parameter of DADG beams. Three distinct regions characterizing steady divergence, oscillatory divergence and self-focusing of DADG beams have been identified with the help of critical and divider curves. The variation of beam-width parameter of DADG beams with distance of propagation has been specifically explored. Finally, the role of magnetic field in the plasma affecting the propagation characteristics of the DADG beams has been introduced. It is seen that propagation characters show strong dependence on the control parameter \(\beta\) of DADG beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Kant, J. Rajput, A. Singh, Magnetic field assisted enhanced electron acceleration due to a chirped echelon phase modulated laser in vacuum. Optik 182, 858–865 (2019)

    Article  ADS  Google Scholar 

  2. J. Singh, J. Rajput, H.S. Ghotra, N. Kant, Electron acceleration by a radially polarised cosh-Gaussian laser beam in vacuum. Commun. Theor. Phys. 73, 095502 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Rajput, N. Kant, A. Singh, Electron acceleration due to a circularly polarized laser pulse on a downward plasma density ramp in the presence of an azimuthal magnetic field. AIP Conf. Proc. 2006, 030025 (2018)

    Article  Google Scholar 

  4. J. Rajput, N. Kant, A. Singh, Electron energy enhancement by frequency chirped axicon Gaussian laser pulse in vacuum. AIP Conf. Proc. 1860, 020005 (2017)

    Article  Google Scholar 

  5. R.A. Ganeev, High-order harmonic generation in a laser plasma: a review of recent achievements. J. Phys. B At. Mol. Opt. Phys. 40, R213 (2007)

    Article  ADS  Google Scholar 

  6. Y. Tyagi, D. Tripathi, K. Walia, Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave. Phys. Plasmas 24, 043104 (2017)

    Article  ADS  Google Scholar 

  7. G.S. Boltaev, R.A. Ganeev, V.V. Kim, N.A. Abbasi, M. Iqbal, A.S. Alnaser, High-order harmonics generation in the plasmas produced on different rotating targets during ablation using 1 kHz and 100 kHz lasers. Opt. Exp. 28, 18859–18875 (2020)

    Article  Google Scholar 

  8. R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers. Nat. Phys. 12, 435–448 (2016)

    Article  Google Scholar 

  9. V.T. Tikhonchuk, Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion. Nucl. Fusion 59, 032001 (2018)

    Article  ADS  Google Scholar 

  10. J. Badziak, J. Domański, Laser-driven acceleration of ion beams for high-gain inertial confinement fusion. Nucl. Fusion 61, 046011 (2021)

    Article  ADS  Google Scholar 

  11. H.K. Malik, D. Singh, Terahertz emission during laser-plasma interaction: effect of electron temperature and collisions. J. Theor. Appl. Phys. 14, 359–365 (2020)

    Article  ADS  Google Scholar 

  12. K. Hu, L. Yi, T. Fulop, Multimillijoule terahertz radiation from laser interactions with microplasma waveguides. Plasma Phys. Control. Fusion 63, 035028 (2021)

    Article  ADS  Google Scholar 

  13. V. Kakkar, K. Walia, Y. Tyagi, K. Sharma, D. Tripathi, Effect of pulse enhancement on beat wave THz generation in a ripple density magnetized plasma. Optik 244, 167601 (2021)

    Article  ADS  Google Scholar 

  14. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609–636 (1968)

    Article  ADS  Google Scholar 

  15. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976)

    Article  ADS  Google Scholar 

  16. H. Hora, Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Physik 226, 156–159 (1969)

    Article  ADS  Google Scholar 

  17. M.V. Asthana, B. Rathore, D. Varshney, Effect of self-generated axial magnetic field and on propagation of intense laser radiation in plasmas. J. Mod. Opt. 56, 1613–1620 (2009)

    Article  ADS  Google Scholar 

  18. M.V. Asthana, B. Rathore, D. Varshney, The anomalous penetration of intense circularly polarized electromagnetic beam through overdense magnetized plasma. Optik 123, 67–72 (2012)

    Article  ADS  Google Scholar 

  19. M. Aggarwal, H. Kumar, N. Kant, Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp. Optik 127, 2212–2216 (2016)

    Article  ADS  Google Scholar 

  20. M. Aggarwal, V. Goyal, H. Kumar, T.S. Gill, Weakly relativistic self-focusing of Gaussian laser beam in magnetized cold quantum plasma. Laser Part. Beams 35, 699–705 (2017)

    Article  ADS  Google Scholar 

  21. A. Singh, M. Aggarwal, T.S. Gill, Dynamics of filament formation in magnetized laser produced plasma. Phys. Scr. 80, 015502 (2009)

    Article  ADS  Google Scholar 

  22. J. Rajput, N. Kant, H. Singh, V. Nanda, Resonant third harmonic generation of a short pulse laser in plasma by applying a wiggler magnetic field. Opt. Commun. 282, 4614–4617 (2009)

    Article  ADS  Google Scholar 

  23. S. Kumar, S. Vij, N. Kant, A. Mehta, Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Eur. Phys. J. Plus 136, 148 (2021)

    Article  Google Scholar 

  24. H.S. Ghotra, N. Kant, GeV electron acceleration by a Gaussian field laser with effect of beam width parameter in magnetized plasma. Opt. Commun. 383, 169–176 (2017)

    Article  ADS  Google Scholar 

  25. A. Singh, J. Rajput, N. Kant, Combined influence of azimuthal and axial magnetic fields on resonant electron acceleration in plasma. Laser Phys. 27, 110001 (2017)

    Article  ADS  Google Scholar 

  26. T.U. Urunkar, S.D. Patil, A.T. Valkunde, B.D. Vhanmore, K.M. Gavade, M.V. Takale, On the exploration of graphical and analytical investigation of effect of critical beam power on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma. Laser Part. Beams 36, 254–260 (2018)

    Article  ADS  Google Scholar 

  27. T.U. Urunkar, S.D. Patil, A.T. Valkunde, B.D. Vhanmore, K.M. Gavade, M.V. Takale, Effect of critical beam radius on self-focusing of cosh-Gaussian laser beams in collisionless magnetized plasma. Commun. Theor. Phys. 70, 220 (2018)

    Article  ADS  Google Scholar 

  28. B.D. Vhanmore, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, S.D. Patil, M.V. Takale, Effect of decentred parameter on self-focusing in the interaction of cosh-Gaussian laser beams with collisionless magnetized plasma. AIP Conf. Proc. 1953, 140047 (2018)

    Article  Google Scholar 

  29. A.T. Valkunde, S.D. Patil, B.D. Vhanmore, T.U. Urunkar, K.M. Gavade, M.V. Takale, V.J. Fulari, Analytical investigation on domain of decentered parameter for self-focusing of Hermite-cosh-Gaussian laser beam in collisional plasma. Phys. Plasmas 25, 033103 (2018)

    Article  ADS  Google Scholar 

  30. B.D. Vhanmore, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, M.V. Takale, S.D. Patil, Self-focusing of higher-order asymmetric elegant Hermite-cosh-Gaussian laser beams in collisionless magnetized plasma. Eur. Phys. J. D 73, 45 (2019)

  31. K.M. Gavade, T.U. Urunkar, B.D. Vhanmore, A.T. Valkunde, M.V. Takale, S.D. Patil, Self-focusing of Hermite–cosh–Gaussian laser beams in a plasma under a weakly relativistic and ponderomotive regime. J. Appl. Spectrosc. 87, 499–504 (2020)

    Article  ADS  Google Scholar 

  32. B.D. Vhanmore, M.V. Takale, S.D. Patil, Influence of light absorption in the interaction of asymmetric elegant Hermite-cosh-Gaussian laser beams with collisionless magnetized plasma. Phys. Plasmas 27, 063104 (2020)

    Article  ADS  Google Scholar 

  33. S.D. Patil, A.T. Valkunde, B.D. Vhanmore, T.U. Urunkar, K.M. Gavade, M.V. Takale, Exploration of temperature range for self-focusing of lowest-order Bessel-Gaussian laser beams in plasma with relativistic and ponderomotive regime. AIP Conf. Proc. 2142, 110012 (2019)

    Article  Google Scholar 

  34. S.D. Patil, B.D. Vhanmore, M.V. Takale, Analysis of temperature range for self-focusing of lowest-order Bessel-Gaussian laser beams in plasma. J. Opt. 49, 510–515 (2020)

    Article  Google Scholar 

  35. S.D. Patil, B.D. Vhanmore, M.V. Takale, Analysis of the Intensity range for self-focusing of Bessel-Gauss laser beams in plasma. J. Russ. Laser Res. 42, 45–52 (2021)

    Article  Google Scholar 

  36. A.T. Valkunde, B.D. Vhanmore, T.U. Urunkar, K.M. Gavade, S.D. Patil, M.V. Takale, Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma. AIP Conf. Proc. 1953, 140088 (2018)

    Article  Google Scholar 

  37. K.Y. Khandale, P.T. Takale, T.U. Urunkar, S.S. Patil, P.P. Nikam, M.B. Mane, V.S. Pawar, A.T. Valkunde, S.D. Patil, M.V. Takale, On the exploration of q parameter in propagation dynamics of q-Gaussian laser beam in underdense collisional plasma. Bulg. J. Phys. 49, 375–385 (2022)

    Google Scholar 

  38. K.Y. Khandale, P.T. Takale, S.S. Patil, T.U. Urunkar, A.T. Valkunde, S.D. Patil and M.V. Takale, Influence of critical beam power on propagation dynamics of q-Gaussian laser beams in isotropic collisional plasma. J. Phys.: Conf. Ser. 2426, 012005 (2023)

  39. V.S. Pawar, S.R. Kokare, S.D. Patil, M.V. Takale, Domains of modulation parameter in the interaction of finite Airy-Gaussian laser beams with plasma. Laser Part. Beams 38, 204–210 (2020)

    Article  ADS  Google Scholar 

  40. V.S. Pawar, P.P. Nikam, S.R. Kokare, S.D. Patil, M.V. Takale, Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma. J. Opt. 50, 403–409 (2021)

    Article  Google Scholar 

  41. P.P. Nikam, V.S. Pawar, K.Y. Khandale, S.S. Patil, M.B. Mane, S.D. Patil, M.V. Takale, Effect of asymmetry in the modulation parameters on self-focusing of asymmetric finite Airy-Gaussian laser beam in collisionless plasma. Indian J. Pure Appl. Phys. 60, 576–581 (2022)

    Google Scholar 

  42. P.P. Patil, S.D. Patil, M.V. Takale, Self-focusing and defocusing of Lorentz-Gauss laser beam in collisionless plasma. Indian J. Pure Appl. Phys. 61, 897–902 (2023)

    Google Scholar 

  43. K.Y. Khandale, P.T. Takale, S.S. Patil, P.P. Nikam, M.B. Mane, S.D. Patil, M.V. Takale, Analytical study of skew-cosh-Gaussian laser beam propagation through collisionless plasma. Indian J. Pure Appl. Phys. 60, 967–972 (2022)

    Google Scholar 

  44. K.Y. Khandale, P.T. Takale, S.S. Patil, T.U. Urunkar, S.D. Patil, M.V. Takale, Analytical investigation of domains of the order of skew-cosh-Gaussian laser beams for relativistic self-focusing/defocusing in homogeneous plasma. Braz. J. Phys. 53, 13 (2023)

    Article  ADS  Google Scholar 

  45. P.T. Takale, K.Y. Khandale, P.P. Nikam, S.S. Patil, T.U. Urunkar, V.S. Pawar, S.D. Patil, M.V. Takale, Analytical exploration of domain-dependent propagation of skew cosh Gaussian laser beam in anisotropic plasma medium. Indian J. Phys. 97, 1849–1855 (2023)

    Article  ADS  Google Scholar 

  46. P. Takale, K. Khandale, S. Patil, S. Patil, M. Takale, Study of propagation of skew cosh Gaussian laser beam in attenuated magneto plasma. Mod. Phys. Lett. B 37, 2350185 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  47. K.Y. Khandale, S.S. Patil, P.T. Takale, A.S. Patil, R.T. Patil, S.D. Patil, M.V. Takale, Self-focusing/defocusing of skew-cosh-Gaussian laser beam for collisional plasma. Laser Phys. 34, 036001 (2024)

    Article  ADS  Google Scholar 

  48. S.A. Ponomarenko, W. Huang, M. Cada, Dark and antidark diffraction-free beams. Opt. Lett. 32, 2508–2510 (2007)

    Article  ADS  Google Scholar 

  49. X. Zhu, F. Wang, C. Zhao, Y. Cai, Experimental realization of dark and antidark diffraction-free beams. Opt. Lett. 44, 2260 (2019)

    Article  ADS  Google Scholar 

  50. M. Yaalou, E.M. El Halba, Z. Hricha, A. Belafhal, Generation of spiraling Bessel beams from dark/antidark Gaussian beams difracted by a curved fork-shaped hologram. Opt. Quant. Electron. 51, 242 (2019)

    Article  Google Scholar 

  51. M.W. Hyde IV., S. Avramov-Zamurovic, Generating dark and antidark beams using the genuine cross-spectral density function criterion. J. Opt. Soc. Am. A 36, 1058–1063 (2019)

    Article  ADS  Google Scholar 

  52. M.W. Hyde IV., Generating electromagnetic dark and antidark partially coherent sources. J. Phys. Commun. 4, 015025 (2020)

    Article  Google Scholar 

  53. F. Saad, A. Belafhal, Conical diffraction of dark and antidark beams modulated by a Gaussian profile in biaxial crystals. Optik 154, 344–353 (2018)

    Article  ADS  Google Scholar 

  54. M. Yaalou, E.M. El Halba, Z. Hricha, A. Belafhal, Propagation characteristics of dark and antidark Gaussian beams in turbulent atmosphere. Opt. Quant. Electron. 51, 255 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors M.B. Mane is thankful to Government of Maharashtra for financial support through National Research Fellowship program (SARTHI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, M.B., Patil, S.S., Takale, P.T. et al. Propagation characters of dark and antidark Gaussian laser beams in collisionless magnetized plasma. J Opt (2024). https://doi.org/10.1007/s12596-024-01885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01885-z

Keywords

Navigation