Log in

Preparation of a nanostructured CdTe@CdS core–shell/Si photodetector by two-step laser ablation in liquid

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this study, CdTe@CdS core–shell nanoparticles (NPs) were synthesized by pulsed laser ablation in distilled water. X-ray diffraction results showed a crystalline core/shell type. UV–Vis measurements revealed that the optical band gap of CdTe@CdS NPs was 2.25 eV. Energy-dispersive X-ray map** confirmed the formation of the CdTe@CdS core/shell. Transmission electron microscope studies revealed that the core size (CdTe) is 16 nm, and the shell thickness (CdS) is around 3 nm. The photoluminescence (PL) spectrum confirms the emission of a strong and broad peak at 506 nm. The current characteristics of the n-CdTe@CdS/p-Si heterojunction exhibited rectifying behavior with an ideality factor of 4.3. The spectral operating region of the fabricated photodetector ranged from visible to near-infrared, with a maximum responsivity of 0.901 A/W at 810 nm. The specific detectivity and external quantum efficiency of CdTe@CdS/Si were 4.5 × 1011 Jones and 1.1 × 102%, respectively, at a bias voltage of − 7.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.V. Goncharenko, Optical properties of core–shell particle composites. I. Linear response. Chem. Phys. Lett. 386(1–3), 25–31 (2004)

    Article  ADS  Google Scholar 

  2. C.J. O’Connor, J.A. Sims, A. Kumbhar, V.L. Kolesnichenko, W.L. Zhou, J.A. Wiemann, Magnetic properties of FePtx/Au and CoPtx/Au core-shell nanoparticles. J. Magn. Magn. Mater. 226, 1915–1917 (2001)

    Article  ADS  Google Scholar 

  3. F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, F. Träger, Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles. Eur. Phys. J. D 34, 165–168 (2005). https://doi.org/10.1140/epjd/e2005-00138-1

    Article  ADS  Google Scholar 

  4. A.V. Nomoev, S.P. Bardakhanov, M. Schreiber, D.G. Bazarova, N.A. Romanov, B.B. Baldanov, V.V. Syzrantsev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein J. Nanotechnol. 6(1), 874–880 (2015)

    Article  Google Scholar 

  5. R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2012)

    Article  Google Scholar 

  6. M. Molaei, H. Hasheminejad, M. Karimipour, Synthesizing and investigating photoluminescence properties of CdTe and CdTe@ CdS core-shell quantum dots (QDs): a new and simple microwave activated approach for growth of CdS shell around CdTe core. Electron. Mater. Lett. 11, 7–12 (2015)

    Article  ADS  Google Scholar 

  7. M. Kim, S. Osone, T. Kim, H. Higashi, T. Seto, Synthesis of nanoparticles by laser ablation: review. KONA Powder Part. J. 34, 80–90 (2017)

    Article  Google Scholar 

  8. R. Zamir, A. Zakaria, R. Jorfi, G. Zamiri, G.M.S. Mojdehi, H.A. Ahangar, A.K. Zak, Laser assisted fabrication of ZnO/Ag and ZnO/Au core/shell nanocomposites. Appl. Phys. A 111, 487–493 (2013)

    Article  ADS  Google Scholar 

  9. A.A. Serkov, I.I. Rakov, A.V. Simakin, P.G. Kuzmin, G.N. Mikhailova, L.K. Antonova, G. Shafeev, in A Influence of External Magnetic Field on Laser Breakdown Plasma in Aqueous Au Nanoparticles Colloidal Solutions (2016). https://doi.org/10.48550/ar**v.1602.08335

  10. J. Yin, L. Liu, Y. Zang, A. Ying, W. Hui, S. Jiang, J. Kang, Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl. 10(1), 113 (2021)

    Article  ADS  Google Scholar 

  11. R.A. Ismail, K.S. Khashan, A.M. Alwan, Study of the effect of incorporation of CdS nanoparticles on the porous silicon photodetector. SILICON 9, 321–326 (2017)

    Article  Google Scholar 

  12. R.A. Ismail, S.A. Zaidan, R.M. Kadhim, Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes. Appl. Nanosci. 7, 477–487 (2017)

    Article  ADS  Google Scholar 

  13. R.A. Ismail, F.A. Fadhil, Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water. J. Mater. Sci. Mater. Electron. 25, 1435–1440 (2014)

    Article  Google Scholar 

  14. M. Marandi, F.S. Mirahmadi, Aqueous synthesis of CdTe–CdS core shell nanocrystals and effect of shell-formation process on the efficiency of quantum dot sensitized solar cells. J. Sol. Energy 188, 35–44 (2019)

    Article  ADS  Google Scholar 

  15. A. Gadalla, M.S. Abd El-Sadek, R. Hamood, Synthesis and optical properties of CdSe/CdS core/shell nanocrystals. Mater. Sci. Pol. 37(2), 149–157 (2019)

    Article  ADS  Google Scholar 

  16. E. Irani, E. Yazdani, A. Bayat, Enhancement and tuning of optical properties of CdTe/CdS core/shell quantum dots by tuning shell thickness. Optik 249, 168198 (2022)

    Article  ADS  Google Scholar 

  17. A.A. Najim, S.S. Shaker, M.A. Muhi, Room temperature NO2 gas sensor based on SnO2–WO3 thin films. Plasmon. J. 12, 1051–1055 (2017)

    Article  Google Scholar 

  18. C.S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, D.L. Morel, High efficiency CSS CdTe solar cells. Thin Solid Films 361, 520–526 (2000)

    Article  ADS  Google Scholar 

  19. C. Potamialis, in Process Sensitivities and Interface Optimisation of CdTe Solar Cells Deposited by Close-Space Sublimation. (Doctoral dissertation, Loughborough University, 2019)

  20. M.S. Alwazny, R.A. Ismail, E.T. Salim, Optical properties of lithium niobate nanoparticles prepared by laser ablation in different surfactant solutions. J. Appl. Sci. Nanotechnol. (2023). https://doi.org/10.53293/jasn.2022.4663.1151

    Article  Google Scholar 

  21. R.A. Ismail, A.D. Faisal, S.S. Shaker, Preparation of ZnS-decorated MWCNTs/p-Si hybrid photodetector by pulsed laser deposition. Opt. Mater. 133, 112998 (2022). https://doi.org/10.1016/j.optmat.2022.112998

    Article  Google Scholar 

  22. E.T. Salim, R.A. Ismail, H.T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126(11), 891 (2020)

    Article  ADS  Google Scholar 

  23. R.A. Ismail, A.M. Mousa, S.S. Shaker, Preparation of visible-enhanced PbI2/MgO/Si heterojunction photodetector. Optik 202, 163585 (2020)

    Article  ADS  Google Scholar 

  24. H. Asady, E.T. Salim, R.A. Ismail, Some critical issues on the structural properties of Nb2O5 nanostructure film deposited by hydrothermal technique. AIP Conf. Proc. 2213, 020183 (2020). https://doi.org/10.1063/5.0000214

    Article  Google Scholar 

  25. R.A. Ismail, O.A. Abdulrazaq, K.Z. Yahya, Preparation and characterization of In2O3 thin films for optoelectronic applications. Surf. Rev. Lett. 12(04), 515–518 (2005)

    Article  ADS  Google Scholar 

  26. R.A. Ismail, Improved characteristics of sprayed CdO films by rapid thermal annealing. J. Mater. Sci. Mater. Electron. 20, 1219–1224 (2009)

    Article  Google Scholar 

  27. R.A. Ismail, A.M. Mousa, S.S. Shaker, Visible-enhanced silver-doped PbI2 nanostructure/Si heterojunction photodetector: effect of do** concentration on photodetector parameters. Opt. Quantum Electron. 51, 1–19 (2019). https://doi.org/10.1007/s11082-019-2063-x

    Article  Google Scholar 

  28. R.A. Ismail, N.F. Habubi, M.M. Abbod, Preparation of high-sensitivity In2S3/Si heterojunction photodetector by chemical spray pyrolysis. Opt. Quantum Electron. 48, 1–14 (2016)

    Article  Google Scholar 

  29. R.A. Ismail, D.N. Raouf, D.F. Raouf, High efficiency In2O3/c-Si heterojunction solar cells produced by rapid thermal oxidation. J. Optoelectron. Adv. Mater. 8(4), 1443 (2006)

    Google Scholar 

  30. A.J. Addie, R.A. Ismail, M.A. Mohammed, Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells. Sci. Rep. 12(1), 9902 (2022)

    Article  ADS  Google Scholar 

  31. R.A. Ismail, Fabrication and characterization of photodetector based on porous silicon. J. Surf. Sci. Nanotechnol. 8, 388–391 (2010)

    Article  Google Scholar 

  32. R.A. Ismail, Characteristics of p-Cu2O/n-Si heterojunction photodiode made by rapid thermal oxidation. J. Semicond. Technol. Sci. 9(1), 51–54 (2009). https://doi.org/10.5573/JSTS.2009.9.1.051

    Article  Google Scholar 

  33. R.A. Ismail, Fabrication and characteristics study of n-Bi2O3/n-Si heterojunction. J. Semicond. Technol. Sci. 6(2), 119–123 (2006)

    Google Scholar 

  34. R.A. Ismail, A.K. Ali, K.I. Hassoon, Preparation of a silicon heterojunction photodetector from colloidal indium oxide nanoparticles. Opt. Laser Technol. 51, 1–4 (2013)

    Article  ADS  Google Scholar 

  35. S.S. Shaker, R.A. Ismail, D.S. Ahmed, High-Responsivity heterojunction photodetector based on Bi2O3-decorated MWCNTs nanostructure grown on silicon via laser ablation in liquid. J. Inorg. Organomet. Polym. Mater. 32(4), 1381–1388 (2022)

    Article  Google Scholar 

  36. S.A. Abid, A.A. Taha, R.A. Ismail, M.H. Mohsin, Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid. Environ. Sci. Pollut. Res. 27(24), 30479–30489 (2020)

    Article  Google Scholar 

  37. R.A. Ismail, S.S. Shaker, A.M. Mousa, Study the optoelectronic properties of PbI2 nanorods/Si photodetector prepared by magnetic field-assisted laser deposition route. Opt. Laser Technol. 140, 107042 (2021). https://doi.org/10.1016/j.optlastec.2021.107042

    Article  Google Scholar 

  38. K.S. Khashan, R.A. Ismail, R.O. Mahdi, Synthesis of SiC nanoparticles by SHG 532 nm Nd: YAG laser ablation of silicon in ethanol. Appl. Phys. A 124(6), 443 (2018)

    Article  ADS  Google Scholar 

  39. R.A. Ismail, S.A. Abid, A.A. Taha, Preparation and characterization of CeO2@ Ag core/shell nanoparticles by pulsed laser ablation in water. Lasers Manuf. Mater. Process. 6(2), 126–135 (2019)

    Article  ADS  Google Scholar 

  40. R.A. Ismail, A. Al-Naimi, A.A. Al-Ani, Studies on fabrication and characterization of a high-performance Al-doped ZnO/n-Si (111) heterojunction photodetector. Semicond. Sci. Technol. 23(7), 075030 (2008)

    Article  ADS  Google Scholar 

  41. R.A. Ismail, A.M.E. Al-Samarai, A.M. Muhammed, High-performance nanostructured p-Cu2S/n-Si photodetector prepared by chemical bath deposition technique. J. Mater. Sci. Mater. Electron. 30, 11807–11818 (2019). https://doi.org/10.1007/s10854-019-01554-z

    Article  Google Scholar 

  42. W.K. Hamoudi, R.A. Ismail, H.F. Abbas, Hybrid CdS nanowires/Si heterostructure photodetector fabricated by intense pulsed light assisted - laser ablation in liquid. Opt. Quant. Electron. 51, 126 (2019). https://doi.org/10.1007/s11082-019-1840-x

    Article  Google Scholar 

  43. H.A. Hadi, F.S. Zain Al-Abedeen, Comparative study in optoelectronic properties between nano gold/porous silicon heterojunction based on P and N-type crystalline silicon. Int. J. Emerg. Res. Manag. Technol. 3, 166–171 (2014)

    Google Scholar 

  44. S. Gunasekaran, D. Thangaraju, R. Marnadu, J. Chandrasekaran, M. Shkir, A. Durairajan, M. Elango, Photosensitive activity of fabricated core-shell composite nanostructured p-CuO@CuS/n-Si diode for photodetection applications. Sens. Actuators A 317, 11237 (2021)

    Article  Google Scholar 

  45. S.S. Shaker, R.A. Ismail, B.K. Mohammed, Preparation of graphene oxide@ ZrO2 core/shell nanoparticles by two-step laser ablation in liquid towards a high-performance silicon-based heterojunction photodetector. SILICON (2023). https://doi.org/10.1007/s12633-023-02476-6

    Article  Google Scholar 

  46. R.A. Ismail, K.I. Hassan, O.A. Abdulrazaq, W.H. Abode, Optoelectronic properties of CdTe/Si heterojunction prepared by pulsed Nd: YAG-laser deposition technique. Mater. Sci. Semicond. 10(1), 19–23 (2007)

    Article  Google Scholar 

  47. S. Al-Ani, R.A. Ismail, H. Al-Ta’ay, Optoelectronic properties n:CdS:In/p-Si heterojunction photodetector. J. Mater. Sci. Mater. Electron. 17, 819–824 (2006)

    Article  Google Scholar 

  48. A.M. Mousa, R.A. Ismail, M.H. Amin, " Hybrid p-Au@ PbI2/n-Si heterojunction photodetector prepared by pulsed laser ablation in liquid. Optik 183, 933–941 (2019)

    Article  ADS  Google Scholar 

  49. R.A. Ismail, W.K. Hamoudi, H.F. Abbas, Synthesis of Au nanoparticles–decorated CdS nanowires via laser ablation in liquid for optoelectronic applications. Appl. Phys. A 124(10), 683 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suaad S. Shaker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalaah, Y.K., Mahmood, O.A., Shaker, S.S. et al. Preparation of a nanostructured CdTe@CdS core–shell/Si photodetector by two-step laser ablation in liquid. J Opt (2024). https://doi.org/10.1007/s12596-024-01720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01720-5

Keywords

Navigation