Log in

Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

A Correction to this article was published on 03 May 2024

This article has been updated

Abstract

This research paper consists of a numerical simulation, where we studied the performance of a solar cell with a double-absorber layer. The materials used in this work are similar kesterites based on Cu2FeSnS4 (CFTS) and Cu2BaSnS4 (CBTS), where CFTS is the main absorber with Eg = 1.5 eV, and CBTS is the extra absorber with Eg = 1.9 eV. The use of both materials to absorb light in the proposed solar cell was very beneficial for photovoltaic performance. The study was mainly done on the different parameters and properties of the solar cell, such as thicknesses, concentrations of do**, and resistances. As a result, the proposed structure has great outputs. It offers 1.48 V, 28.26 mA/cm2, 82.68, and 34.65% for Voc, Jsc, FF, and ƞ, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

Abbreviations

CFTS (Cu2FeSnS4):

Copper iron tin sulfur

PCE (ɳ(%)):

Power conversion efficiency

CdS:

Cadmium sulfide

FF (%):

Fill factor

ITO:

Indium tin oxide

SC:

Solar cell

CBTS (Cu2BaSnS4):

Copper barium tin sulfide

E g :

Band gap energy

µ n (cm2/vs):

Electron mobility

V oc (V):

Open-circuit voltage

µ p (cm2/vs):

Hole mobility

J sc (mA/cm2):

Short-circuit current density

\({N}_{{\text{D}}}\) (cm 3):

Donor’s concentration

Q e (%):

Quantum efficiency

\({N}_{{\text{A}}}\)(cm 3):

Shallow uniform acceptor density

E g (eV):

Band gap

V e /h (cm/s):

Thermal velocity of electron/Hole

χ (eV):

Electron affinity

Nt (cm 3):

Defect density

ε r :

Dielectric permittivity (relative)

\(\varphi ({\text{ev}})\) :

Contact work function

N c (cm 3):

CB effective density of states

Se (cm/s):

Electrons surface recombination velocity

N v (cm 3):

VB effective density of states

Sh (cm/s):

Surface recombination velocity for holes

References

  1. L.S.I. De Montoya, H.J. Cortina-Marrero, M.A. Ruíz-Sánchez, L. Hechavarría-Difur, F.J. Sánchez-Rodríguez, M. Courel, H. Hu, Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study. Sol. Energy 199, 198–205 (2020). https://doi.org/10.1016/j.solener.2020.02.026

    Article  ADS  Google Scholar 

  2. T. Chargui, F. Lmai, M. Al-Hattab, O. Bajjou, K. Rahmani, Experimental and numerical study of the CIGS/CdS heterojunction solar cell. Opt. Mater. 140, 113849 (2023). https://doi.org/10.1016/j.optmat.2023.113849

    Article  Google Scholar 

  3. X. Zhao, H.Q. Tan, E. Birgersson, H. Xue, Elucidating the underlying physics in a two-terminal all-perovskite tandem solar cell: A guideline towards 30% power conversion efficiency. Sol. Energy 231, 716–731 (2022). https://doi.org/10.1016/j.solener.2021.11.029

    Article  ADS  Google Scholar 

  4. J. Guerroum, M. Al-Hattab, Y. Chrafih, L. Moudou, K. Rahmani, Y. Lachtioui, O. Bajjou, Ag2BeSnX4(S, Se, Te)-based kesterite solar cell modeling: A D F T investigation and S c a p s - 1 d analysis. Sol. Energy 266, 112194 (2023). https://doi.org/10.1016/j.solener.2023.112194

    Article  ADS  Google Scholar 

  5. M. Al-Hattab, Y. Chrafih, E. Oublal, M. Sahal, L. Moudou, O. Bajjou, K. Rahmani, Ab initio investigation for solar technology on the optical and electronic properties of double perovskites Cs 2 AgBiX 6 (X=Cl, Br, I). ECS J. Solid State Sci. Technol. 12, 094004 (2023). https://doi.org/10.1149/2162-8777/acf7ed

    Article  ADS  Google Scholar 

  6. M. Al-Hattab, E. Oublal, Y. Chrafih, L. Moudou, O. Bajjou, M. Sahal, K. Rahmani, Novel simulation and efficiency enhancement of eco-friendly Cu2FeSnS4/c-silicon tandem solar device. SILICON (2023). https://doi.org/10.1007/s12633-023-02582-5

    Article  Google Scholar 

  7. H. Guan, H. Shen, B. Jiao, X. Wang, Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Mater. Sci. Semicond. Process. 25, 159–162 (2014). https://doi.org/10.1016/j.mssp.2013.10.021

    Article  Google Scholar 

  8. F. Ozel, Earth-abundant quaternary semiconductor Cu 2 MSnS 4 (M = Fe Co, Ni and Mn) nanofibers: Fabrication, characterization and band gap arrangement. J. Alloys Compd. 657, 157–162 (2016). https://doi.org/10.1016/j.jallcom.2015.10.087

    Article  Google Scholar 

  9. D. Shin, T. Zhu, X. Huang, O. Gunawan, V. Blum, D.B. Mitzi, Earth-abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu 2 BaSn(S, Se) 4 absorber. Adv. Mater. 29, 1606945 (2017). https://doi.org/10.1002/adma.201606945

    Article  Google Scholar 

  10. J. Ge, P. Koirala, C.R. Grice, P.J. Roland, Y. Yu, X. Tan, R.J. Ellingson, R.W. Collins, Y. Yan, Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu 2 BaSnS 4 thin-film solar cells. Adv. Energy Mater. 7, 1601803 (2017). https://doi.org/10.1002/aenm.201601803

    Article  Google Scholar 

  11. A. Ghobadi, M. Yousefi, M. Minbashi, A.H.A. Kordbacheh, A.R.H. Abdolvahab, N.E. Gorji, Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Opt. Mater. 107, 109927 (2020). https://doi.org/10.1016/j.optmat.2020.109927

    Article  Google Scholar 

  12. R.K. Zahoo, Effect of carrier concentration and thickness of absorber layer on performance CBTS solar cell. Turk. J. Comput. Math. Educ. TURCOMAT 12, 5056–5064 (2021). https://doi.org/10.17762/turcomat.v12i10.5281

    Article  Google Scholar 

  13. H.T. Ghanem, A.N. Saleh, M.A. Kamil, Simulation and improvement of the efficiency of the CFTS solar cell using SCAPS-1D, karbala Int. J. Mod. Sci. 8, 63–70 (2022). https://doi.org/10.33640/2405-609X.3207

    Article  Google Scholar 

  14. M. Al-Hattab, E. Oublal, M. Sahal, L. Moudou, O. Bajjou, K. Rahmani, Simulation study of the novel Ag2MgSn(S/Se)4 chalcogenide tandem solar device employing monolithically integrated (2T) configurations. Sol. Energy 248, 221–229 (2022). https://doi.org/10.1016/j.solener.2022.11.024

    Article  ADS  Google Scholar 

  15. C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Effect of sulfur concentration on structural, optical and electrical properties of Cu2FeSnS4 thin films for solar cells and photocatalysis applications. Superlattices Microstruct. 124, 17–29 (2018). https://doi.org/10.1016/j.spmi.2018.09.033

    Article  ADS  Google Scholar 

  16. E. Oublal, A. Ait Abdelkadir, M. Sahal, High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS-1D software. J. Nanoparticle Res. 24, 202 (2022). https://doi.org/10.1007/s11051-022-05580-7

    Article  ADS  Google Scholar 

  17. F.K. Konan, H.T. Nkuissi, B. Hartiti, Numerical simulations of highly efficient Cu2FeSnS4 (CFTS)-based solar cells. Int. J. Renew. Energy Res. (2019). https://doi.org/10.20508/ijrer.v9i4.9816.g7829

    Article  Google Scholar 

  18. S. Madani, T. Tesfamichael, H. Wang, N. Motta, Study of Pb-based and Pb-free perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport material. Ceram. Int. 48, 15207–15217 (2022). https://doi.org/10.1016/j.ceramint.2022.02.051

    Article  Google Scholar 

  19. H. Abnavi, D.K. Maram, A. Abnavi, Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: A simulation study. Opt. Mater. 118, 111258 (2021). https://doi.org/10.1016/j.optmat.2021.111258

    Article  Google Scholar 

  20. V.C. Karade, J.S. Jang, D. Kumbhar, M. Rao, P.S. Pawar, S. Kim, K.S. Gour, J. Park, J. Heo, T.D. Dongale, J.H. Kim, Combating open circuit voltage loss in Sb2Se3 solar cell with an application of SnS as a back surface field layer. Sol. Energy 233, 435–445 (2022). https://doi.org/10.1016/j.solener.2022.01.010

    Article  ADS  Google Scholar 

  21. K. Fatema, M.S. Arefin, Enhancing the efficiency of Pb-based and Sn-based perovskite solar cell by applying different ETL and HTL using SCAPS-ID. Opt. Mater. 125, 112036 (2022). https://doi.org/10.1016/j.optmat.2022.112036

    Article  Google Scholar 

  22. M. Cai, N. Ishida, X. Li, X. Yang, T. Noda, Y. Wu, F. **e, H. Naito, D. Fujita, L. Han, Control of electrical potential distribution for high-performance perovskite solar cells. Joule 2, 296–306 (2018). https://doi.org/10.1016/j.joule.2017.11.015

    Article  Google Scholar 

  23. O. Bajjou, M. Al-Hattab, A. Najim, L. Moulaoui, A. Bakour, K. Rahmani, Modeling and simulation of a solar cell based on CIGS/CdS/ZnO, In: 2022 2nd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. IRASET, IEEE, Meknes, Morocco, 2022: pp. 1–5. https://doi.org/10.1109/IRASET52964.2022.9737875

  24. M. Al-Hattab, L. Moudou, L. Moulaoui, Y. Chrafih, A. Najim, M. Khenfouch, O. Bajjou, K. Rahmani, Numerical Simulation of CdS/GaSe Solar Cell Using SCAPs Simulation Software, in Recent Adv Fuzzy Sets Theory Fract Calc Dyn Syst Optim. ed. by S. Melliani, O. Castillo (Springer, Cham, 2023), pp.315–325. https://doi.org/10.1007/978-3-031-12416-7_27

    Chapter  Google Scholar 

  25. J. Chen, N. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019 (2019). https://doi.org/10.1002/adma.201803019

    Article  Google Scholar 

  26. E. Oublal, M. Al-Hattab, A. Ait Abdelkadir, M. Sahal, New numerical model for a 2T-tandem solar cell device with narrow band gap SWCNTs reaching efficiency around 35 %. Sol. Energy 246, 57–65 (2022). https://doi.org/10.1016/j.solener.2022.09.036

    Article  ADS  Google Scholar 

  27. L.K. Ono, S. Frank Liu, Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59, 6676–6698 (2020). https://doi.org/10.1002/anie.201905521

    Article  Google Scholar 

  28. F. Baig, Mitigation of interface recombination by careful selection of ETL for efficiency enhancement of MASnI3 solar cell. Optik 170, 463 (2018)

    Article  ADS  Google Scholar 

  29. M. Moustafa, T. Al Zoubi, S. Yasin, Exploration of CZTS-based solar using the ZrS2 as a novel buffer layer by SCAPS simulation. Opt. Mater. 124, 112001 (2022). https://doi.org/10.1016/j.optmat.2022.112001

    Article  Google Scholar 

  30. Y. Chrafih, M. Al-Hattab, K. Rahmani, Thermodynamic, optical, and morphological studies of the Cs2AgBiX6 double perovskites (X = Cl, Br, and I): Insights from DFT study. J. Alloys Compd. 960, 170650 (2023). https://doi.org/10.1016/j.jallcom.2023.170650

    Article  Google Scholar 

  31. M.A. Shafi, L. Khan, S. Ullah, M.Y. Shafi, A. Bouich, H. Ullah, B. Mari, Novel compositional engineering for ~26% efficient CZTS-perovskite tandem solar cell. Optik 253, 168568 (2022). https://doi.org/10.1016/j.ijleo.2022.168568

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Marc Burgelman for ensuring that \(SCAPS-1D\) software was available.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Essaadia Oublal or Mohamed Al-Hattab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oublal, E., Al-Hattab, M., Ait Abdelkadir, A. et al. Cu2BaSnS4/Cu2FeSnS4 combination for a good light absorption in thin-film solar cells—a numerical model. J Opt (2024). https://doi.org/10.1007/s12596-024-01667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01667-7

Keywords

Navigation