Log in

A new pseudorandom number generator based on chaos in digital filters for image encryption

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Pseudorandom number generators (PRNGs) are an essential tool in cryptography; they produce secret keys to encrypt messages or mask the content by combining it with a random sequence. This study introduces an efficient pseudorandom number generator for a new cryptographic application. The PRNG structure comprises two chaotic digital IIR filters of the second and third order and a 4D hyperchaotic system. In this system, the first chaotic sequence is used as the input to the filters, and the second chaotic sequence is used to select the values of the pseudorandom sequence from the outputs of filters. The cryptosystem algorithm utilizes the pseudorandom sequence produced by the proposed PRNG to create a matrix mask and XOR it with a source image after being permuted with a new technique. The permutation method involves shuffling the positions of the original image using a matrix derived from two mathematical operations (modulo and division) and the final chaotic sequence. For heightened security, the shuffled image is subsequently divided into blocks and mixed using the third chaotic sequence. Statistical and frequency tests demonstrate that the proposed PRNG has strong randomness, high uncertainty, and an absence of discernible statistical patterns. Furthermore, simulation, experimental results, and performance analysis confirm that the new cryptosystem exhibits high security and resilience against various attacks, including differential and statistical attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Hemalatha, M. Sekar, C. Kumar, A. Gutub, A.K. Sahu, Towards improving the performance of blind image steganalyzer using third-order SPAM features and ensemble classifier. J. Inf. Secur. Appl. 76, 103541 (2023). https://doi.org/10.1016/j.jisa.2023.103541

    Article  Google Scholar 

  2. HASSAN, Fatuma Saeid et GUTUB, Adnan. Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme—ScienceDirect. Consulté le: 11 décembre 2023. [En ligne]. Disponible sur: https://www.sciencedirect.com/science/article/pii/S1319157820304225

  3. F. Hassan, A. Gutub, Efficient reversible data hiding multimedia technique based on smart image interpolation. Multimed. Tools Appl. 79, 30087–30109 (2020). https://doi.org/10.1007/s11042-020-09513-1

    Article  Google Scholar 

  4. F.S. Hassan, A. Gutub, Efficient image reversible data hiding technique based on interpolation optimization. Arab. J. Sci. Eng. 46(9), 8441–8456 (2021). https://doi.org/10.1007/s13369-021-05529-3

    Article  Google Scholar 

  5. F. Hassan, A. Gutub, Improving data hiding within colour images using hue component of HSV colour space. CAAI Trans. Intell. Technol. 7, 56–68 (2021). https://doi.org/10.1049/cit2.12053

    Article  Google Scholar 

  6. A. Gutub, Boosting image watermarking authenticity spreading secrecy from counting-based secret-sharing. CAAI Trans. Intell. Technol. 8, 440–452 (2022). https://doi.org/10.1049/cit2.12093

    Article  Google Scholar 

  7. B. Fathi-Vajargah, R. Asghari, A novel pseudo-random number generator for cryptographic applications. Indian J. Sci. Technol. 9, 1–5 (2016). https://doi.org/10.17485/ijst/2016/v9i6/73922

    Article  Google Scholar 

  8. S. Reegan, Pseudorandom Number Generators for Cryptographic Applications (2005). Consulté le: 11 juillet 2022. [En ligne]. Disponible sur: https://www.academia.edu/32824181/Pseudorandom_Number_Generators_for_Cryptographic_Applications

  9. K. Bhattacharjee, S. Das, A search for good pseudo-random number generators: survey and empirical studies. Comput. Sci. Rev. 45, 100471 (2022). https://doi.org/10.1016/j.cosrev.2022.100471

    Article  MathSciNet  Google Scholar 

  10. R.B. Naik, U. Singh, A review on applications of chaotic maps in pseudo-random number generators and encryption. Ann. Data Sci. (2022). https://doi.org/10.1007/s40745-021-00364-7

    Article  Google Scholar 

  11. A. Gutub, Enhancing cryptography of grayscale images via resilience randomization flexibility. Int. J. Inf. Secur. Priv. IJISP 16(1), 1–28 (2022). https://doi.org/10.4018/IJISP.307071

    Article  Google Scholar 

  12. B. Al Roithy, A. Gutub, Remodeling randomness prioritization to boost-up security of RGB image encryption. Multimed. Tools Appl. 80, 28521–28581 (2021). https://doi.org/10.1007/s11042-021-11051-3

    Article  Google Scholar 

  13. A. Gutub, B. AlRoithy, Varying PRNG to improve image cryptography implementation. J. Eng. Res. 9, 153–183 (2021). https://doi.org/10.36909/jer.v9i3A.10111

    Article  Google Scholar 

  14. A. Gutub, Dynamic smart random preference for higher medical image confidentiality. J. Eng. Res. (2022). https://doi.org/10.36909/jer.17853

    Article  Google Scholar 

  15. M.D. Gupta, R.K. Chauhan, Secure image encryption scheme using 4D-Hyperchaotic systems based reconfigurable pseudo-random number generator and S-Box. Integration 81, 137–159 (2021). https://doi.org/10.1016/j.vlsi.2021.07.002

    Article  Google Scholar 

  16. S. Krishnamoorthi, P. Jayapaul, V. Rajasekar, A modernistic approach for chaotic based pseudo random number generator secured with gene dominance. Sādhanā 46(1), 8 (2021). https://doi.org/10.1007/s12046-020-01537-5

    Article  MathSciNet  Google Scholar 

  17. U. Zia, M. McCartney, B. Scotney, J. Martinez, A. Sajjad, A novel pseudo-random number generator for IoT based on a coupled map lattice system using the generalised symmetric map. SN Appl. Sci. 4(2), 48 (2022). https://doi.org/10.1007/s42452-021-04919-4

    Article  Google Scholar 

  18. C. Yang, I. Taralova, S. El Assad, J.-J. Loiseau, Image encryption based on fractional chaotic pseudo-random number generator and DNA encryption method. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07534-z

    Article  Google Scholar 

  19. Z. Man et al., A novel image encryption algorithm based on least squares generative adversarial network random number generator. Multimed. Tools Appl. 80(18), 27445–27469 (2021). https://doi.org/10.1007/s11042-021-10979-w

    Article  Google Scholar 

  20. H. **ang, L. Liu, A new perturbation-feedback hybrid control method for reducing the dynamic degradation of digital chaotic systems and its application in image encryption. Multimed. Tools Appl. 80(13), 19237–19261 (2021). https://doi.org/10.1007/s11042-021-10680-y

    Article  Google Scholar 

  21. N. Nishchal, Optical Cryptosystems (IOP Publishing, Bristol, 2019). https://doi.org/10.1088/978-0-7503-2220-1

    Book  Google Scholar 

  22. L.O. Chua, T. Lin, Chaos in digital filters. IEEE Trans. Circuits Syst. 35(6), 648–658 (1988). https://doi.org/10.1109/31.1802

    Article  MathSciNet  Google Scholar 

  23. L. Chua, T. Lin, Chaos and fractals from third-order digital filters. Int. J. Circuit Theory Appl. (1990). https://doi.org/10.1002/cta.4490180303

    Article  MathSciNet  Google Scholar 

  24. Z.B. Madouri, N. Hadj Said, A. Ali Pacha, Image encryption algorithm based on digital filters controlled by 2D robust chaotic map. Optik 264, 169382 (2022). https://doi.org/10.1016/j.ijleo.2022.169382

    Article  ADS  Google Scholar 

  25. R. Pich, S. Chivapreecha, J. Prabnasak, A new key generator for data encryption using chaos in digital filter, in 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC) (2017), pp. 87–92. https://doi.org/10.1109/ICSGRC.2017.8070574

  26. M. Petrović, Digital Signal Filtering as a Method of Data Encryption (2014)

  27. C. Roeksukrungrueang, X. Dittaphong, K. Khongsomboon, N. Panyanouyong, S. Chivapreecha, Chaotic encoder-decoder on FPGA for crypto system, in Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific (2014), pp. 1–5. https://doi.org/10.1109/APSIPA.2014.7041740

  28. X. Liu, X. Tong, Z. Wang, M. Zhang, Efficient high nonlinearity S-box generating algorithm based on third-order nonlinear digital filter. Chaos Solitons Fractals 150, 111109 (2021). https://doi.org/10.1016/j.chaos.2021.111109

    Article  MathSciNet  Google Scholar 

  29. X. Wang, J. Zhang, Y. Fan, W. Zhang, Chaotic pseudorandom bit generator using n-dimensional nonlinear digital filter, in 2006 International Conference on Communication Technology, (2006), pp. 1–4. https://doi.org/10.1109/ICCT.2006.342008

  30. X. Chen et al., Pseudorandom number generator based on three kinds of four-wing memristive hyperchaotic system and its application in image encryption. Complexity 2020, e8274685 (2020). https://doi.org/10.1155/2020/8274685

    Article  Google Scholar 

  31. Y. **ao, X. Tong, M. Zhang, Z. Wang, Image lossless encoding and encryption method of EBCOT Tier1 based on 4D hyperchaos. Multimed. Syst. 28(3), 727–748 (2022). https://doi.org/10.1007/s00530-021-00868-5

    Article  Google Scholar 

  32. R. Garcia, A. Volkova, M. Kumm, A. Goldsztejn, J. Kühle, Hardware-aware design of multiplierless second-order IIR filters with minimum adders. IEEE Trans. Signal Process. 70, 1673–1686 (2022). https://doi.org/10.1109/TSP.2022.3161158

    Article  ADS  Google Scholar 

  33. D. Datta, H.S. Dutta, High performance IIR filter implementation on FPGA. J. Electr. Syst. Inf. Technol. 8(1), 2 (2021). https://doi.org/10.1186/s43067-020-00025-4

    Article  Google Scholar 

  34. L.M. Kocarev, Chaotic behavior in digital filters. J. Frankl. Inst. 331(6), 937–955 (1994). https://doi.org/10.1016/0016-0032(94)90093-0

    Article  MathSciNet  Google Scholar 

  35. K. Kutzer, W. (Technische U. D. (Germany) I. fuer G. der E. und E. Schwarz, Chaotic signals generated by digital filter overflow, Consulté le: 30 juin 2022. [En ligne]. Disponible sur: https://core.ac.uk/display/40725935

  36. S.K. Abd-El-Hafiz, S.H. AbdElHaleem, A.G. Radwan, Permutation techniques based on discrete chaos and their utilization in image encryption, in 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), (2016), pp. 1–6. https://doi.org/10.1109/ECTICon.2016.7561265

  37. M.A. Murillo-Escobar, C. Cruz-Hernández, L. Cardoza-Avendaño, R. Méndez-Ramírez, A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017). https://doi.org/10.1007/s11071-016-3051-3

    Article  MathSciNet  Google Scholar 

  38. C.E. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  Google Scholar 

  39. D.E. Knuth, The Art of Computer Programming (Addison-Wesley, Boston, 1998)

    Google Scholar 

  40. M. Naim, H. Ali Pacha, A. Ali Pacha, N. Said, Lengthening the period of a Linear Feedback Shift Register. J. Eng. Technol. Appl. Sci. (2021). https://doi.org/10.30931/jetas.778792

    Article  Google Scholar 

  41. H. Ali Pacha, N. Said, A. Ali Pacha, M.A. Mohamed, M. Mamat, Cryptographic adaptation of the middle square generator. Int. J. Electr. Comput. Eng. IJECE 9, 5615 (2019). https://doi.org/10.11591/ijece.v9i6.pp5615-5627

    Article  Google Scholar 

  42. L.E. Bassham et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST, (2010), Consulté le: 9 décembre 2023. [En ligne]. Disponible sur: https://www.nist.gov/publications/statistical-test-suite-random-and-pseudorandom-number-generators-cryptographic

  43. S. Abdelhaleem, S. Abd-El-Hafiz, A. Radwan, A generalized framework for elliptic curves based PRNG and its utilization in image encryption. Sci. Rep. 12, 13278 (2022). https://doi.org/10.1038/s41598-022-17045-x

    Article  ADS  Google Scholar 

  44. M.M. Al-Mhadawi, E.A. Albahrani, S.H. Lafta, Efficient and secure chaotic PRNG for color image encryption. Microprocess. Microsyst. 101, 104911 (2023). https://doi.org/10.1016/j.micpro.2023.104911

    Article  Google Scholar 

  45. B.K. Sharobim, M.H. Yacoub, W.S. Sayed, A.G. Radwan, L.A. Said, Artificial Neural Network Chaotic PRNG and simple encryption on FPGA. Eng. Appl. Artif. Intell. 126, 106888 (2023). https://doi.org/10.1016/j.engappai.2023.106888

    Article  Google Scholar 

  46. F. Yu et al., Design and FPGA implementation of a pseudo-random number generator based on a hopfield neural network under electromagnetic radiation. Front. Phys. 9, 690651 (2021). https://doi.org/10.3389/fphy.2021.690651

    Article  Google Scholar 

  47. W. Li, X. Chang, A. Yan, H. Zhang, Asymmetric multiple image elliptic curve cryptography. Opt. Lasers Eng. 136, 106319 (2021). https://doi.org/10.1016/j.optlaseng.2020.106319

    Article  Google Scholar 

  48. W.J. Jun, T.S. Fun, A new image encryption algorithm based on single S-Box and dynamic encryption step. IEEE Access 9, 120596–120612 (2021). https://doi.org/10.1109/ACCESS.2021.3108789

    Article  Google Scholar 

  49. B.O. Al-Roithy, A.A. Gutub, Trustworthy image security via involving binary and chaotic gravitational searching within PRNG selections. Int. J. Comput. Sci. Netw. Secur. 20(12), 167–176 (2020). https://doi.org/10.22937/IJCSNS.2020.20.12.18

    Article  Google Scholar 

  50. P. Fang, H. Liu, C. Wu, M. Liu, A block image encryption algorithm based on a hyperchaotic system and generative adversarial networks. Multimed. Tools Appl. 81(15), 21811–21857 (2022). https://doi.org/10.1007/s11042-022-12092-y

    Article  Google Scholar 

  51. J. Payingat, D.P. Pattathil, Pseudorandom bit sequence generator for stream cipher based on elliptic curves. Math. Probl. Eng. 2015, e257904 (2015). https://doi.org/10.1155/2015/257904

    Article  MathSciNet  Google Scholar 

  52. J. Tian et al., A novel image encryption algorithm using PWLCM map-based CML chaotic system and dynamic DNA encryption. Multimed. Tools Appl. 80(21), 32841–32861 (2021). https://doi.org/10.1007/s11042-021-11218-y

    Article  Google Scholar 

  53. S. Babbage et al., ECRYPT yearly report on algorithms and keysizes (2009)

  54. Y. Wu, Y. Zhou, J.P. Noonan, S. Agaian, Design of image cipher using latin squares. Inf. Sci. 264, 317–339 (2014). https://doi.org/10.1016/j.ins.2013.11.027

    Article  MathSciNet  Google Scholar 

  55. J. Tian, Y. Lu, X. Zuo, Y. Liu, B. Qiao, M. Fan, S. Fan, A novel image encryption algorithm using PWLCM map-based CML chaotic system and dynamic DNA encryption. Multimed. Tools Appl. 80(21–23), 32841–32861 (2021). https://doi.org/10.1007/s11042-021-11218-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. B. Madouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madouri, Z.B., Hadj Said, N. & Ali Pacha, A. A new pseudorandom number generator based on chaos in digital filters for image encryption. J Opt (2024). https://doi.org/10.1007/s12596-023-01606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01606-y

Keywords

Navigation