Log in

Self-focusing of Laguerre–Gaussian laser beams in collisionless plasma: paraxial-like approach

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The unique characteristic of Laguerre–Gaussian beams (LGBs) is their orbital angular momentum originated from twisting the phase of light into helical shape and forming a spiral. The self-focusing of LGBs in plasma in different physical situations on a certain domains of laser–plasma parameters has a clear physical interpretation, can be easily analysed and could be controlled in an experiment for diverse applications. Present work is therefore devoted to the self-focusing properties of LGBs in collisionless plasma. Considering the ponderomotive nonlinearity, a nonlinear Schrodinger-type equation for the beam width parameter is established analytically with the help of Wentzel–Kramers–Brillouin approximation and paraxial-like approach. The effects of laser parameters and plasma parameters on the self-focusing properties of the LGBs have been explored. The investigation reveals the fact that as vortex charge number of LGBs and plasma electron temperature increases, the extent of self-focusing decreases. Further, with increase in intensity parameter of LGBs and plasma electron density, the self-focusing of LGBs increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169 (1976)

    Article  ADS  Google Scholar 

  2. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445 (2009)

    Article  ADS  Google Scholar 

  3. N. Kant, D.N. Gupta, H. Suk, Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas. Phys. Plasmas 19(1), 013101 (2012)

    Article  ADS  Google Scholar 

  4. N. Kant, A. Singh, V. Thakur, Second-harmonic generation by a chirped laser pulse with the exponential density ramp profile in the presence of a planar magnetostatic wiggler. Laser Part. Beams 37(4), 442–447 (2019)

    Article  ADS  Google Scholar 

  5. X.L. Wang, Z.Y. Xu, W. Luo, H.Y. Lu, Z.C. Zhu, X.Q. Yan, Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator. Phys. Plasmas 24, 093105 (2017)

    Article  ADS  Google Scholar 

  6. N. Kant, J. Rajput, A. Singh, Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field. High Energy Density Phys. 26, 16–22 (2018)

    Article  ADS  Google Scholar 

  7. J. Rajput, N. Kant, A. Singh, Resonance assisted enhanced electron acceleration in the presence of self generated magnetic fields due to circularly polarized laser in plasma. AIP Conf. Proc. 2136, 060012 (2019)

    Article  Google Scholar 

  8. N. Kant, J. Rajput, A. Singh, Magnetic field assisted enhanced electron acceleration due to a chirped echelon phase modulated laser in vacuum. Optik 182, 858–865 (2019)

    Article  ADS  Google Scholar 

  9. R. Betti, O.A. Hurricane, Inertial confinement fusion with lasers. Nat. Phys. 12, 435–448 (2016)

    Article  Google Scholar 

  10. S.K. Sivamalini, O. Kamboj, N. Kant, J. Rajput, Stimulated Raman scattering in inertial confinement fusion - a review. AIP Conf. Proc. 2800, 020285 (2023)

    Article  Google Scholar 

  11. S.D. Patil, M.V. Takale, S.T. Navare, V.J. Fulari, M.B. Dongare, Analytical study of HChG-laser beam propagation in collisional and collisionless plasmas. J. Opt. 36, 136–144 (2007)

    Article  Google Scholar 

  12. S.D. Patil, M.V. Takale, S.T. Navare, M.B. Dongare, Cross focusing of two coaxial cosh-Gaussian laser beams in a parabolic medium. Optik 122, 1869 (2011)

    Article  ADS  Google Scholar 

  13. M.A. Wani, N. Kant, Investigation of relativistic self-focusing of Hermite-cosine-Gaussian laser beam in collisionless plasma. Optik 127, 4705–4709 (2016)

    Article  ADS  Google Scholar 

  14. B.D. Vhanmore, A.T. Valkunde, T.U. Urunkar, K.M. Gavade, S.D. Patil, M.V. Takale, Effect of decentred parameter on self-focusing in the interaction of cosh-Gaussian laser beams with collisionless magnetized plasma. AIP Conf. Proc. 1953, 140047 (2018)

    Article  Google Scholar 

  15. A.T. Valkunde, S.D. Patil, B.D. Vhanmore, T.U. Urunkar, K.M. Gavade, M.V. Takale, V.J. Fulari, Analytical investigation on domain of decentered parameter for self-focusing of Hermite-cosh-Gaussian laser beam in collisional plasma. Phys. Plasmas 25, 033103 (2018)

    Article  ADS  Google Scholar 

  16. S.D. Patil, B.D. Vhanmore, M.V. Takale, Analysis of temperature range for self-focusing of lowest-order Bessel-Gaussian laser beams in plasma. J. Opt. 49, 510–515 (2020)

    Article  Google Scholar 

  17. V.S. Pawar, S.R. Kokare, S.D. Patil, M.V. Takale, Domains of modulation parameter in the interaction of finite Airy-Gaussian laser beams with plasma. Laser Part. Beams 38, 204–210 (2020)

    Article  ADS  Google Scholar 

  18. K.M. Gavade, T.U. Urunkar, B.D. Vhanmore, A.T. Valkunde, M.V. Takale, S.D. Patil, Self-focusing of Hermite–cosh–Gaussian laser beams in a plasma under a weakly relativistic and ponderomotive regime. J. Appl. Spectrosc. 87, 499–504 (2020)

    Article  ADS  Google Scholar 

  19. S.D. Patil, B.D. Vhanmore, M.V. Takale, Analysis of the intensity range for self-focusing of Bessel-Gauss laser beams in plasma. J. Russ. Laser Res. 42, 45–52 (2021)

    Article  Google Scholar 

  20. V.S. Pawar, P.P. Nikam, S.R. Kokare, S.D. Patil, M.V. Takale, Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma. J. Opt. 50, 403–409 (2021)

    Article  Google Scholar 

  21. K.Y. Khandale, P.T. Takale, S.S. Patil, P.P. Nikam, M.B. Mane, S.D. Patil, M.V. Takale, Analytical study of skew-cosh-Gaussian laser beam propagation through collisionless plasma. Indian J. Pure Appl. Phys. 60, 967 (2022)

    Google Scholar 

  22. P.P. Nikam, V.S. Pawar, P.T. Takale, K.Y. Khandale, S.S. Patil, M.B. Mane, S.D. Patil, M.V. Takale, Effect of asymmetry in the modulation parameters on self-focusing of asymmetric finite Airy-Gaussian laser beam in collisionless plasma. Indian J. Pure Appl. Phys. 60, 576 (2022)

    Google Scholar 

  23. P.P. Patil, S.D. Patil, M.V. Takale, Self-focusing and defocusing of Lorentz-Gauss laser beam in collisionless plasma. Indian J. Pure Appl. Phys. 61, 897–901 (2023)

    Google Scholar 

  24. P.T. Takale, K.Y. Khandale, P.P. Nikam, S.S. Patil, T.U. Urunkar, V.S. Pawar, S.D. Patil, M.V. Takale, Analytical exploration of domain-dependent propagation of skew cosh Gaussian laser beam in anisotropic plasma medium. Indian J. Phys. 97, 1849–1855 (2023)

    Article  ADS  Google Scholar 

  25. W.L. Power, R.C. Thompson, Laguerre-Gaussian laser beams and ion traps. Opt. Commun. 132, 371–378 (1996)

    Article  ADS  Google Scholar 

  26. A.T. O’Neil, M.J. Padgett, Axial and lateral trap** efficiency of Laguerre-Gaussian modes in inverted optical tweezers. Opt. Commun. 193, 45–50 (2001)

    Article  ADS  Google Scholar 

  27. W. Wang, B. Shen, X. Zhang, L. Zhang, Y. Shi, Z. Xu, Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser. Sci. Rep. 5, 8274 (2015)

    Article  ADS  Google Scholar 

  28. G.-B. Zhang, M. Chen, J. Luo, M. Zeng, T. Yuan, J.-Y. Yu, Y.-Y. Ma, T.-P. Yu, L.-L. Yu, S.-M. Weng, Z.-M. Sheng, Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses. J. Appl. Phys. 119, 103101 (2016)

    Article  ADS  Google Scholar 

  29. W. Paufler, B. Böning, S. Fritzsche, High harmonic generation with Laguerre-Gaussian beams. J. Opt. 21, 094001 (2019)

    Article  ADS  Google Scholar 

  30. Y.-T. Hu, Y. Cao, J. Zhao, G.-B. Zhang, K. Liu, L.-X. Hu, T.-P. Yu, Above-100 MeV proton beam generation from near-critical-density plasmas irradiated by moderate Laguerre-Gaussian laser pulses. Plasma Phys. Control. Fusion 64, 125002 (2022)

    Article  ADS  Google Scholar 

  31. O. Culfa, S. Sagir, I. Satilmis, Study of particle acceleration by Laguerre-Gaussian ultra intense laser plasma interactions. Plasma Phys. Control. Fusion 65, 085019 (2023)

    Article  ADS  Google Scholar 

  32. A. Thakur, J. Berakdar, Self-focusing and defocusing of twisted light in non-linear media. Opt. Exp. 18, 27691 (2010)

    Article  Google Scholar 

  33. M. Khamedi, A.R. Bahrampour, Analysis of twisted laser beam focusing and defocusing in plasma. Phys. Scr. 88, 035503 (2013)

    Article  ADS  MATH  Google Scholar 

  34. A.S. Firouzjaei, B. Shokri, Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse. Phys. Plasmas 23, 063102 (2016)

    Article  Google Scholar 

  35. N. Kant, V. Thakur, Enhanced self-focusing of Laguerre-Gaussian laser beam in relativistic plasma under exponential plasma density transition. Chin. J. Phys. 70, 182–187 (2021)

    Article  MathSciNet  Google Scholar 

  36. P. Kad, A. Singh, Spatio-temporal variation of Laguerre-Gaussian laser pulse and its effect on electron acceleration. Chin. J. Phys. 82, 171 (2023)

    Article  MathSciNet  Google Scholar 

  37. N. Gupta, Effect of orbital angular momentum of light on self-action effects of Laguerre Gaussian laser beams in collisionless plasmas. J. Opt. 50, 466 (2021)

    Article  Google Scholar 

  38. A. Bhatia, K. Walia, A. Singh, Laguerre-Gaussian laser beam guiding and its second harmonics in plasma having density ramp. Phys. Plasmas 29, 092107 (2022)

    Article  ADS  Google Scholar 

  39. M.S. Sodha, S.K. Mishra, S. Misra, Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 57 (2009)

    Article  ADS  Google Scholar 

  40. Q. Suo, Y. Han, Z. Cui, The propagation properties of a Laguerre-Gaussian beam in nonlinear plasma. Opt. Quant. Electron. 54, 367 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors S.S. Patil is thankful to Government of Maharashtra for financial support through National Research Fellowship Program (SARTHI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.S., Khandale, K.Y., Takale, P.T. et al. Self-focusing of Laguerre–Gaussian laser beams in collisionless plasma: paraxial-like approach. J Opt (2023). https://doi.org/10.1007/s12596-023-01478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01478-2

Keywords

Navigation