Log in

Corrosion in solar cells: challenges and solutions for enhanced performance and durability

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Corrosion is a critical issue that can significantly impact the performance and lifespan of solar cells, affecting their efficiency and reliability. Understanding the complex relationship between corrosion and solar cell technologies is essential for develo** effective strategies to mitigate corrosion-related challenges. In this review article, we provide a comprehensive overview of the various corrosion mechanisms that affect solar cells, including moisture-induced corrosion, galvanic corrosion, and corrosion in harsh environments. We discuss the adverse effects of corrosion on the materials commonly used in solar cells, such as silicon, metals, and transparent conductive oxides. Furthermore, we explore the strategies and technologies employed to prevent and control corrosion in solar cells, including the use of protective coatings, encapsulation techniques, and corrosion-resistant materials. Additionally, we discuss the characterization methods and accelerated testing approaches utilized to evaluate the corrosion resistance of solar cell components. This review aims to enhance our understanding of the corrosion issues faced by solar cells and to provide insights into the development of corrosion-resistant materials and robust protective measures for improved solar cell performance and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

All data will be available when request from the authors.

References

  1. Z. Khalili, M. Sheikholeslami, Investigation of innovative cooling system for photovoltaic solar unit in existence of thermoelectric layer utilizing hybrid nanomaterial and Y-shaped fins. Sustain. Cities Soc. 93, 104543 (2023)

    Article  Google Scholar 

  2. V. K. Domakonda, S. Farooq, S. Chinthamreddy, R. Puviarasi, M. Sudhakar, S. Boopathi, Sustainable Developments of Hybrid Floating Solar Power Plants: Photovoltaic System, in Human Agro-Energy Optimization for Business and Industry, IGI Global, pp. 148–167(2023).

  3. Z. Ishrat, A. K. Gupta, S. Nayak, A comprehensive review of MPPT techniques based on ML applicable for maximum power in solar power systems, J. Renew. Energy Environ. (2023)

  4. J. Tang, H. Ni, R.L. Peng, N. Wang, L. Zuo, A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power Sources 562, 232785 (2023)

    Article  Google Scholar 

  5. C. Raja, M. Ramachandran, S. Chinnasami, An analysis on solar photovoltaic technology using IBM SPSS statistics. J. Electron. Autom. Eng. 2, 1–1 (2023)

    Google Scholar 

  6. M. Benchrifa, M. Elouardi, G. Fattah, J. Mabrouki, R. Tadili, Identification, simulation and modeling of the main power losses of a photovoltaic installation and use of the internet of things to minimize system losses, in Advanced Technology for Smart Environment and Energy, Cham: Springer International Publishing, pp. 49–60 (2023).

  7. W. Liu, Key technologies for photovoltaic power generation. Highlights in Sci. Eng. Technol. 43, 74–83 (2023)

    Article  Google Scholar 

  8. J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells. Nano-Micro Lett. 15(1), 84 (2023)

    Article  ADS  Google Scholar 

  9. T. Rahman, A.A. Mansur, M.S. Hossain Lipu, M.S. Rahman, R.H. Ashique, M.A. Houran et al., Investigation of degradation of solar photovoltaics: a review of aging factors, impacts, and future directions toward sustainable energy management. Energies 16(9), 3706 (2023)

    Article  Google Scholar 

  10. H. Zhou, L. Liang, Z. Guo, R. Fan, Anti-corrosion strategy to improve the stability of perovskite solar cells. Nanoscale 15(1), 84 (2023)

    Google Scholar 

  11. A. C. Santa, M. A. Gómez, J. G. Castaño, J. A. Tamayo, L. M. Baena, Atmospheric deterioration of ceramic building materials and future trends in the field: a review, Heliyon, vol. 0, no. 0, p. e109 (2023)

  12. M. R. A. Bhuiyan, S. Sikder, R. Hosen, M. S. Uddin, M. M. Haque, H. Mamur, Influence of different layers on enhancing the Pv performance of Al/Zno/Znmno/Cigsse/Cu2o/Ni solar cells, Zno/Znmno/Cigsse/Cu2o/Ni Solar Cells. (2023). https://doi.org/10.2139/ssrn.4452569

  13. C. Cui et al., Strategies to break the trade-off between infrared transparency and conductivity" Progress Mater Sci, vol. 101112 (2023)

  14. S. Palei, G. Murali, C.H. Kim, I. In, S.Y. Lee, S.J. Park, A review on interface engineering of MXenes for Perovskite solar cells. Nano-Micro Letters 15(1), 1–39 (2023)

    Article  Google Scholar 

  15. M. Hosseinnezhad, Z. Ranjbar, A review on flexible dye-sensitized solar cells as new sustainable energy resources. Pigm. Resin Technol. 52(3), 310–320 (2023)

    Article  Google Scholar 

  16. I.J. Park, H.K. An, Y. Chang, J.Y. Kim, Interfacial modification in perovskite-based tandem solar cells. Nano Converg. 10(1), 1–13 (2023)

    Article  Google Scholar 

  17. M. Massoud, G. Vega, A. Subburaj, J. Partheepan, Review on recycling energy resources and sustainability, Heliyon, p. e127 (2023)

  18. J. Luo et al., Improved carrier management via a multifunctional modifier for high‐quality low‐bandgap Sn–Pb perovskites and efficient all‐perovskite tandem solar cells, Adv. Mater., p. 2300352, (2023)

  19. N. Kyranaki et al., Damp-heat induced degradation in photovoltaic modules manufactured with passivated emitter and rear contact solar cells. Prog. Photovolt. Res. Appl. 30(9), 1061–1071 (2022)

    Article  Google Scholar 

  20. F. Ni, P. **ao, C. Zhang, T. Chen, Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and freshwater generation. Matter 5(9), 2624–2658 (2022)

    Article  Google Scholar 

  21. R. Barreira-Pinto, R. Carneiro, M. Miranda, R.M. Guedes, Polymer-matrix composites: characterising the impact of environmental factors on their lifetime. Materials 16(11), 3913 (2023)

    Article  ADS  Google Scholar 

  22. P.M. Sommeling, J. Liu, J.M. Kroon, Corrosion effects in bifacial crystalline silicon PV modules; interactions between metallization and encapsulation. Sol. Energy Mater. Sol. Cells 256, 112321 (2023)

    Article  Google Scholar 

  23. O.K. Segbefia, N. Akhtar, T.O. Sætre, Defects and fault modes of field-aged photovoltaic modules in the Nordics. Energy Rep. 9, 3104–3119 (2023)

    Article  Google Scholar 

  24. R. Meena, M. Kumar, R. Gupta, Reliability and degradation analysis of crystalline silicon photovoltaic module, Solar Energy Adv. Chall., p. 125 (2023)

  25. C. Sen et al., The role of Na+ contamination in humidity-induced degradation in silicon HJT cells, in 2023 IEEE 49th Photovoltaic Specialists Conference (PVSC), pp. 666–669 (2023).

  26. L. Ocaña et al., Characterization of a new low temperature encapsulation method with ethylene-vinyl acetate under UV irradiation for perovskite solar cells. Appl. Sci. 12(10), 5228 (2022)

    Article  Google Scholar 

  27. Y. Li et al., Artificial graphite paper as a corrosion-resistant current collector for long-life lithium metal batteries. Adv. Funct. Mater. 33(19), 2214523 (2023). https://doi.org/10.1002/adfm.202214523

    Article  Google Scholar 

  28. T. Kollo, Predicting atmospheric galvanic corrosion of aluminum using accelerated laboratory electrochemical experiments [Doctoral dissertation], University of Alaska Anchorage (2022).

  29. C. Smith, "evaluation of fastening strategies for reducing galvanic corrosion damage in aluminum structures containing dissimilar metals" [Doctoral dissertation], University of Hawai'i at Manoa (2022)

  30. N. Singh et al., Progress in bioactive surface coatings on biodegradable Mg alloys: a critical review towards clinical translation. Bioactive Mater 19, 717–757 (2023)

    Article  Google Scholar 

  31. J. Luo et al., Robust corrosion performance of cold sprayed aluminide coating in ternary molten carbonate salt for concentrated solar power plants. Sol. Energy Mater. Sol. Cells 237, 111573 (2022)

    Article  Google Scholar 

  32. D. Merino-Millan et al., Alternative low-power plasma-sprayed inconel 625 coatings for thermal solar receivers: effects of high temperature exposure on adhesion and solar absorptivity. Sol. Energy Mater. Sol. Cells 245, 111839 (2022)

    Article  Google Scholar 

  33. B. Nomeir et al., Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels. Sol. Energy Mater. Sol. Cells 257, 112347 (2023)

    Article  Google Scholar 

  34. J. Zhou et al., Passivating contacts for high-efficiency silicon-based solar cells: from single-junction to tandem architecture. Nano Energy 92, 106712 (2022)

    Article  Google Scholar 

  35. G. Murugadoss et al., Cost-effective carbon black-graphite composite with solid-state based CuSCN electrode for dye-sensitized solar cells. Fuel 348, 128527 (2023)

    Article  Google Scholar 

  36. F. Kabir et al., Instability of dye-sensitized solar cells using natural dyes and approaches to improving stability–an overview. Sustain. Energy Technol. Assess. 52, 102196 (2022)

    Google Scholar 

  37. X. Li et al., Potential‐free sodium‐induced degradation of silicon heterojunction solar cells, Progress Photovolt. Res. Appl. (2023)

  38. N. Iqbal, Improving the performance and durability of metal contacts in crystalline silicon solar cells using advanced characterization. Electronic Theses and Dissertations, 2020. 1474 (2022). https://stars.library.ucf.edu/etd2020/1474

  39. M.W. Akram et al., Failures of photo. Appl. Energy 313, 118822 (2022)

    Google Scholar 

  40. Y. Abou Jieb, E. Hossain, Fabrication of Solar Cell, Photovoltaic Systems: Fundamentals and Applications, pp 23–55 (2022)

  41. R. Bender et al., Corrosion challenges towards a sustainable society. Mater. Corros. 73(11), 1730–1751 (2022)

    Article  Google Scholar 

  42. Y. Xu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022)

    Article  ADS  Google Scholar 

  43. V.H. Nguyen et al., Advances in flexible metallic transparent electrodes. Small 18(19), 2106006 (2022)

    Article  Google Scholar 

  44. S.K. Maurya et al., Recent progress in transparent conductive materials for photovoltaics. Energies 15(22), 8698 (2022)

    Article  Google Scholar 

  45. A.S. Rasal et al., Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy 94, 106854 (2022)

    Article  Google Scholar 

  46. T.J. Pan et al., Anti-corrosion performance of the conductive bilayer CrC/CrN coated 304SS bipolar plate in acidic environment. Corros. Sci. 206, 110495 (2022)

    Article  Google Scholar 

  47. S. Ma et al., Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15(1), 13–55 (2022)

    Article  Google Scholar 

  48. Y. Zhang et al., Graphene-like two-dimensional nanosheets-based anticorrosive coatings: a review, J. Mater. Sci. Technol. (2022)

  49. N. Yurrita et al., Composite material incorporating protective coatings for photovoltaic cell encapsulation. Sol. Energy Mater. Sol. Cells 245, 111879 (2022)

    Article  Google Scholar 

  50. L. **ang et al., Progress on the stability and encapsulation techniques of perovskite solar cells, Org. Electron., pp. 106515 (2022)

  51. N. Yurrita, J. Aizpurua, W. Cambarau, G. Imbuluzqueta, J. Hernández, F. Cano, O. Zubillaga, Composite material incorporating protective coatings for photovoltaic cell encapsulation. Sol. Energy Mater. Sol. Cells 245, 111879 (2022)

    Article  Google Scholar 

  52. L. **ang, Y. Gao, F., Cao, D. Li, Q. Liu, H. Liu, S. & Li, Progress on the stability and encapsulation techniques of perovskite solar cells. Org. Electron., 106515 (2022)

  53. R. V. Roper, The effect of impurities and geometry on the corrosion and thermodynamic behavior of molten salts (Doctoral dissertation, University of Idaho) (2022)

  54. N. H. Faisal et al., Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities, ChemNanoMat, pp. e202200384 (2022)

  55. B. Gupta et al., Recent advances in materials design using atomic layer deposition for energy applications. Adv. Func. Mater. 32(3), 2109105 (2022)

    Article  MathSciNet  Google Scholar 

  56. A. Mortazavi et al., High-temperature corrosion of a nickel-based alloy in a molten chloride environment–the effect of thermal and chemical purifications. Sol. Energy Mater. Sol. Cells 236, 111542 (2022)

    Article  Google Scholar 

  57. R. O. Medupin et al., Sustainable approach for corrosion control in mild steel using plant-based inhibitors: a review. Mater. Today Sustain. pp. 100373 (2023)

  58. G. Ren et al., Overcoming perovskite corrosion and de-do** through chemical binding of halogen bonds toward efficient and stable perovskite solar cells. Nano-Micro Lett. 14(1), 175 (2022)

    Article  ADS  Google Scholar 

  59. K. Bawane et al., Visualizing time-dependent microstructural and chemical evolution during molten salt corrosion of Ni-20Cr model alloy using correlative quasi in situ TEM and in situ synchrotron X-ray nano-tomography. Corros. Sci. 195, 109962 (2022)

    Article  Google Scholar 

  60. L. Ma et al., Comparative review of different influence factors on molten salt corrosion characteristics for thermal energy storage. Sol. Energy Mater. Sol. Cells 235, 111485 (2022)

    Article  Google Scholar 

  61. Y. Yin et al., Role of headspace environment for phase change carbonates on the corrosion of stainless steel 316L: High temperature thermal storage cycling in concentrated solar power plants. Sol. Energy Mater. Sol. Cells 251, 112170 (2023)

    Article  Google Scholar 

  62. Q. Gao et al., High-temperature corrosion behavior of austenitic stainless steel in quaternary nitrate molten salt nanofluids for concentrated solar power. Sol. Energy Mater. Sol. Cells 245, 111851 (2022)

    Article  Google Scholar 

  63. W.N.S.W. Shamsuddin et al., Environmentally robust Ag–Cu based low-E coatings. Sol. Energy Mater. Sol. Cells 248, 112033 (2022)

    Article  Google Scholar 

  64. Dilibban. V. R. R., N. Nandakumar, T. Sekar, "Analysis of thermal energy storing and self-cleaning coating for solar panel by using titanium dioxide, melamine formaldehyde."

  65. P. Rodič et al., Superhydrophobic aluminium surface to enhance corrosion resistance and obtain self-cleaning and anti-icing ability. Molecules 27(3), 1099 (2022)

    Article  MathSciNet  Google Scholar 

  66. B.M. Suyitno et al., The assessment of reflector material durability for concentrated solar power based on environment exposure and accelerated aging test. Eastern-Eur. J. Enterprise Technol. 6(12), 120 (2022)

    Google Scholar 

  67. X. Wang et al., A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology. Sol. Energy Mater. Sol. Cells 248, 111976 (2022)

    Article  Google Scholar 

  68. I. Høiaas et al., Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies. Renew. Sustain. Energy Rev. 161, 112353 (2022)

    Article  Google Scholar 

  69. C. Ballif et al., Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7(8), 597–616 (2022)

    Article  ADS  Google Scholar 

  70. A. Tarancón et al., 2022 roadmap on 3D printing for energy. J. Phys. Energy 4(1), 011501 (2022)

    Article  ADS  Google Scholar 

  71. J. Kettle et al., Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging technologies. Prog. Photovoltaics Res. Appl. 30(12), 1365–1392 (2022)

    Article  Google Scholar 

  72. H. Zhou et al., "Anti-corrosion Strategy to improve the stability of perovskite solar cells," Nanoscale.

  73. C.P. Li et al., Stability improvement of inverted organic solar cells with thin organic protective layer. Org. Electron. 108, 106602 (2022)

    Article  Google Scholar 

  74. H. Yuan et al., A study of Al2O3/MgO composite films deposited by FCVA for thin-film encapsulation. Materials 16(5), 1955 (2023)

    Article  ADS  Google Scholar 

  75. H. Yuan et al., A novel and efficient technology of depositing Al2O3 film for OLEDs thin film encapsulation. Vacuum 196, 110741 (2022)

    Article  ADS  Google Scholar 

  76. I. W. Ma et al., A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies, J. Coat. Technol. Res., pp. 1–28 (2022)

  77. S. Junaedi, A.A.H. Kadhum, A. Al-Amiery, A.B. Mohamad, M.S. Takriff, Synthesis and characterization of novel corrosion inhibitor derived from oleic acid: 2-Amino-5- Oleyl 1,3,4-Thiadiazol (AOT). Int. J. Electrochem. Sci. 7, 3543–3554 (2012)

    Article  Google Scholar 

  78. H.S. Aljibori, A.H. Alwazir, S. Abdulhadi, W.K. Al-Azzawi, A.A.H. Kadhum, L.M. Shaker, A.A. Al-Amiery, HSh. Majdi, The use of a Schiff base derivative to inhibit mild steel corrosion in 1 M HCl solution: a comparison of practical and theoretical findings. Int. J. Corros. Scale Inhib. 11(4), 1435–1455 (2022)

    Google Scholar 

  79. W.K. Al-Azzawi, S.M. Salih, A.F. Hamood, R.K. Al-Azzawi, M.H. Kzar, H.N. Jawoosh, L.M. Shakier, A. Al-Amiery, A.A.H. Kadhum, W.N.R.W. Isahak, M.S. Takriff, Adsorption and theoretical investigations of a Schiff base for corrosion inhibition of mild steel in an acidic environment. Int. J. Corros. Scale Inhib. 11(3), 1063–1082 (2022)

    Google Scholar 

  80. D.M. Jamil, A. Al-Okbi, M. Hanon, K.S. Rida, A. Alkaim, A. Al-Amiery, A. Kadhum, A.A.H. Kadhum, Carbethoxythiazole corrosion inhibitor: as an experimentally model and DFT theory. J. Eng. Appl. Sci. 13, 3952–3959 (2018)

    Google Scholar 

  81. A. Alobaidy, A. Kadhum, S. Al-Baghdadi, A. Al-Amiery, A. Kadhum, E. Yousif, A.B. Mohamad, Eco-friendly corrosion inhibitor: experimental studies on the corrosion inhibition performance of creatinine for mild steel in HCl complemented with quantum chemical calculations. Int. J. Electrochem. Sci. 10, 3961–3972 (2015)

    Article  Google Scholar 

  82. S. Al-Bghdadi, M. Hanoon, J. Odah, L. Shaker, A. Al-Amiery, A.A. Benzylidene as Efficient Corrosion Inhibition of Mild Steel in Acidic Solution. Proceedings, 41, 27 (2019).

  83. B.S. Mahdi, H.S.S. Aljibori, M.K. Abbass, W.K. Al-Azzawi, A.H. Kadhum, M.M. Hanoon, W.N.R.W. Isahak, A.A. Al-Amiery, HSh. Majdi, Gravimetric analysis and quantum chemical assessment of 4-aminoantipyrine derivatives as corrosion inhibitors. Int. J. Corros. Scale Inhib. 11(3), 1191–1213 (2022)

    Google Scholar 

  84. A.A. Alamiery, Study of corrosion behavior of N´-(2-(2-oxomethylpyrrol-1-yl) ethyl) piperidine for mild steel in the acid environment. Biointerface Res. Appl. Chem. 12, 3638–3646 (2022)

    Google Scholar 

  85. A. Alamiery, A. Mohamad, A. Kadhum, M. Takriff, Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. Data Brief 40, 107838 (2022)

    Article  Google Scholar 

  86. A.M. Mustafa, F.F. Sayyid, N. Betti, L.M. Shaker, M.M. Hanoon, A.A. Alamiery, A.A.H. Kadhum, M.S. Takriff, Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole. S. Afr. J. Chem. Eng. 39, 42–51 (2022)

    Google Scholar 

  87. A.A. Alamiery, Investigations on corrosion inhibitory effect of newly quinoline derivative on mild steel in HCl solution complemented with antibacterial studies. Biointerface Rese. Appl. Chem. 12, 1561–1568 (2022)

    Google Scholar 

  88. I.A. Alkadir Aziz, I.A. Annon, M.H. Abdulkareem, M.M. Hanoon, M.H. Alkaabi, L.M. Shaker, A.A. Alamiery, W.N.R. Wan Isahak, M.S. Takriff, Insights into corrosion inhibition behavior of a 5-mercapto-1, 2, 4-triazole derivative for mild steel in hydrochloric acid solution: experimental and DFT studies. Lubricants 9, 122 (2021)

    Article  Google Scholar 

  89. A. Alamiery, Short report of mild steel corrosion in 0.5 M H2SO4 by 4-ethyl-1-(4-oxo4-phenylbutanoyl)thiosemicarbazide. Tribologi 30, 90–99 (2021)

    Google Scholar 

  90. A.A. Alamiery, W.N.R.W. Isahak, M.S. Takriff, Inhibition of mild steel corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: gravimetrical, adsorption and theoretical studies. Lubricants 9, 93 (2021)

    Article  Google Scholar 

  91. M.A. Dawood, Z.M.K. Alasady, M.S. Abdulazeez, D.S. Ahmed, G.M. Sulaiman, A.A.H. Kadhum, L.M. Shaker, A.A. Alamiery, The corrosion inhibition effect of a pyridine derivative for low carbon steel in 1 M HCl medium: complemented with antibacterial studies. Int. J. Corros. Scale Inhib. 10, 1766–1782 (2021)

    Google Scholar 

  92. A. Alamiery, Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1- propyl)-1,3,4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations. Mater. Sci. Energy Technol. 4, 398–406 (2021)

    Google Scholar 

  93. A. Alamiery, Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies. Mater. Sci. Energy Technol. 4, 263–273 (2021)

    Google Scholar 

  94. A. Alamiery, W.N.R.W. Isahak, H. Aljibori, H. Al-Asadi, A. Kadhum, Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yln-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 m HCl solution. Int. J. Corros. Scale Inhib. 10, 700–713 (2021)

    Google Scholar 

  95. A. Alamiery, E. Mahmoudi, T. Allami, Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies. Int. J. Corros. Scale Inhib. 10, 749–765 (2021)

    Google Scholar 

  96. A.J.M. Eltmimi, A. Alamiery, A.J. Allami, R.M. Yusop, A.H. Kadhum, T. Allami, Inhibitive effects of a novel efficient Schiff base on mild steel in hydrochloric acid environment. Int. J. Corros. Scale Inhib. 10, 634–648 (2021)

    Google Scholar 

  97. A. Alamiery, L.M. Shaker, T. Allami, A.H. Kadhum, M.S. Takriff, A study of acidic corrosion behavior of furan-derived Schiff base for mild steel in hydrochloric acid environment: experimental, and surface investigation. Mater. Today: Proc. 44, 2337–2341 (2021)

    Google Scholar 

  98. S. Al-Baghdadi, A. Al-Amiery, T. Gaaz, A. Kadhum, Terephthalohydrazide and isophthalo-hydrazide as new corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical approaches. Koroze Ochr. Mater. 65, 12–22 (2021)

    Article  Google Scholar 

  99. M.M. Hanoon, A.M. Resen, L.M. Shaker, A. Kadhum, A. Al-Amiery, Corrosion investigation of mild steel in aqueous hydrochloric acid environment using n- (Naphthalen-1yl)-1-(4-pyridinyl)methanimine complemented with antibacterial studies. Biointerface Res Appl. Chem. 11, 9735–9743 (2021)

    Google Scholar 

  100. S. Al-Baghdadi, T.S. Gaaz, A. Al-Adili, A. Al-Amiery, M. Takriff, Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation. Int. J. Low-Carbon Technol. 16, 181–188 (2021)

    Article  Google Scholar 

  101. A. Al-Amiery, Anti-corrosion performance of 2-isonicotinoyl-nphenylhydrazinecarbothioamide for mild steel hydrochloric acid solution: Insights from experimental measurements and quantum chemical calculations. Surf. Rev. Lett. 28, 2050058 (2021)

    Article  ADS  Google Scholar 

  102. M.S. Abdulazeez, Z.S. Abdullahe, M.A. Dawood, Z.K. Handel, R.I. Mahmood, S. Osamah, A.H. Kadhum, L.M. Shaker, A.A. Al-Amiery, Corrosion inhibition of low carbon steel in HCl medium using a thiadiazole derivative: weight loss, DFT studies and antibacterial studies. Int. J. Corros. Scale Inhib. 10, 1812–1828 (2021)

    Google Scholar 

  103. A. Mustafa, F. Sayyid, N. Betti, M. Hanoon, A. Al-Amiery, A. Kadhum, M. Takriff, Inhibition Evaluation of 5-(4-(1H-pyrrol-1-yl)phenyl)-2-mercapto-1,3,4-oxadiazole for the corrosion of mild steel in an acid environment: thermodynamic and DFT aspects. Tribologia 38, 39–47 (2021)

    Google Scholar 

  104. Y.M. Abdulsahib, A.J.M. Eltmimi, S.A. Alhabeeb, M.M. Hanoon, A.A. Al-Amiery, T. Allami, A.A.H. Kadhum, Experimental and theoretical investigations on the inhibition efficiency of N-(2,4-dihydroxytolueneylidene)-4-methylpyridin-2-amine for the corrosion of mild steel in hydrochloric acid. Int. J. Corros. Scale Inhib. 10, 885–899 (2021)

    Google Scholar 

  105. A.K. Khudhair, A.M. Mustafa, M.M. Hanoon, A. Al-Amiery, L.M. Shaker, T. Gazz, A.B. Mohamad, A.H. Kadhum, M.S. Takriff, Experimental and theoretical investigation on the corrosion inhibitor potential of N-MEH for mild steel in HCl. Prog. Color Color. Coat. 15, 111–122 (2022)

    Google Scholar 

  106. D.S. Zinad, R.D. Salim, N. Betti, L.M. Shaker, A.A. AL-Amiery, Comparative Investigations of the Corrosion Inhibition Efficiency of a 1-phenyl- 2-(1- phenylethylidene)hydrazine and its analog against mild steel corrosion in hydrochloric acid solution. Prog. Color Color. Coat. 15, 53–63 (2022)

    Google Scholar 

  107. R.D. Salim, N. Betti, M. Hanoon, A.A. Al-Amiery, 2-(2,4-Dimethoxybenzylidene)- N-Phenylhydrazinecarbothioamide as an Efficient Corrosion Inhibitor for Mild Steel in Acidic Environment, Prog. Color. Color. Coat. 15, 45–52 (2021)

    Google Scholar 

  108. A.A. Al-Amiery, L.M. Shaker, A.H. Kadhum, M.S. Takriff, Exploration of furan derivative for application as corrosion inhibitor for mild steel in hydrochloric acid solution: Effect of immersion time and temperature on efficiency. Mater. Today: Proc. 42, 2968–2973 (2021)

    Google Scholar 

  109. A.M. Resen, M.M. Hanoon, W.K. Alani, A. Kadhim, A.A. Mohammed, T.S. Gaaz, A.A.H. Kadhum, A.A. Al-Amiery, M.S. Takriff, Exploration of 8-piperazine-1- ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in hydrochloric acid solution. Int. J. Corros. Scale Inhib. 10, 368–387 (2021)

    Google Scholar 

  110. M.M. Hanoon, A.M. Resen, A.A. Al-Amiery, A.A.H. Kadhum and M.S. Takriff, Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of 2-((6- Methyl-2-Ketoquinolin-3-yl)Methylene) Hydrazinecarbothioamide for Mild Steel in 1 M HCl, Prog. Color, Color. Coat., 15, 21–33 (2021).

  111. F.G. Hashim, T.A. Salman, S.B. Al-Baghdadi, T. Gaaz, A.A. Al-Amiery, Inhibition effect of hydrazine-derived coumarin on a mild steel surface in hydrochloric acid. Tribologia 37, 45–53 (2020)

    Google Scholar 

  112. A.M. Resen, M. Hanoon, R.D. Salim, A.A. Al-Amiery, L.M. Shaker, A.A.H. Kadhum, Gravimetrical, theoretical, and surface morphological investigations of corrosion inhibition effect of 4-(benzoimidazole-2-yl) pyridine on mild steel in hydrochloric acid. Koroze Ochr. Mater. 64, 122–130 (2020)

    Article  Google Scholar 

  113. A.Z. Salman, Q.A. Jawad, K.S. Ridah, L.M. Shaker, A.A. Al-Amiery, Selected BISthiadiazole: synthesis and corrosion inhibition studies on mild steel in HCL environment. Surf. Rev. Lett. 27, 2050014 (2020)

    Article  ADS  Google Scholar 

  114. S. Junaedi, A. Al-Amiery, A. Kadihum, A. Kadhum, A. Mohamad, Inhibitioneffects of a synthesized novel 4-aminoantipyrine derivative on the corrosion of mild steel in hydrochloric acid solution together with quantum chemicalstudies. Int. J. Mol. Sci. 14, 11915–11928 (2013)

    Article  Google Scholar 

  115. A. Alamiery, W.N.R.W. Isahak, H.S.S. Aljibori, H.A. Al- Asadi, A.A.H. Kadhum, Effect of the structure, immersion time and temperature on the corrosion inhibition of 4- pyrrol-1-yl-n-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 M HCL solution. Int. J. Corros. Scale Inhib. 10, 700–713 (2021)

    Google Scholar 

  116. S. Al-Baghdadi, F. Hashim, A. Salam, T. Abed, T. Gaaz, A. Al-Amiery, A.H. Kadhum, K. Reda, W. Ahmed, Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies. Results Phys. 8, 1178–1184 (2018)

    Article  ADS  Google Scholar 

  117. W.K. Al-Azzawi, A.J. Al-Adily, F.F. Sayyid, R.K. Al-Azzawi, M.H. Kzar, H.N. Jawoosh, A.A. Al-Amiery, A.A.H. Kadhum, W.N.R.W. Isahak, M.S. Takriff, Evaluation of corrosion inhibition characteristics of an N-propionanilide derivative for mild steel in 1 M HCl: gravimetrical and computational studies. Int. J. Corros. Scale Inhib. 11(3), 1100–1114 (2022)

    Google Scholar 

  118. A.A. Al-Amiery, W.N. RoslamWanIsahak, W.K. Al-Azzawi, Corrosion inhibitors: natural and synthetic organic inhibitors. Lubricants 11(4), 174 (2023)

    Article  Google Scholar 

  119. N. Betti, A.A. Al-Amiery, W.K. Al-Azzawi, W.N.R. Wan Isahak, Corrosion inhibition properties of schiff base derivative against mild steel in HCl environment complemented with DFT investigations. Sci. Rep. 13(1), 8979 (2023)

    Article  ADS  Google Scholar 

  120. A. Al-Amiery, W. N. R. Wan Isahak, W. K. Al-Azzawi, ODHI: a promising isatin-based corrosion inhibitor for mild steel in hydrochloric acid, J. Mol. Struct., vol. 135829 (2023)

  121. A.A. Al-Amiery, N. Betti, W.N.R. Wan Isahak, W.K. Al-Azzawi, W.M.N. Wan Nik, Exploring the effectiveness of isatin-schiff base as an environmentally friendly corrosion inhibitor for mild steel in hydrochloric acid. Lubricants 11(5), 211 (2023)

    Article  Google Scholar 

  122. A. Kadhim et al., Palmitic acid-based amide as a corrosion inhibitor for mild steel in 1M HCl. Heliyon 9(4), e14657 (2023). https://doi.org/10.1016/j.heliyon.2023.e14657

    Article  Google Scholar 

  123. H.S. Aljibori et al., Corrosion inhibition effects of concentration of 2-oxo-3-hydrazonoindoline in acidic solution, exposure period, and temperature. Int. J. Corros. Scale Inhib. 12(2), 438–457 (2023)

    Google Scholar 

  124. A. Al-Amiery, Schiff's base performance in preventing corrosion on mild steel in acidic conditions, Prog. Color, Colorants Coat. (2023).

  125. A. Al-Amiery, Investigation of the corrosion inhibition properties of 4-cyclohexyl-3-thiosemicarbazide on mild steel in 1 M HCl solution, Prog. Color, Colorants Coat. (2023)

  126. S. Hussein et al., Antibacterial corrosion inhibitor for the protection of mild steel in 1 M HCl solution. Prog. Color, Colorants Coat. 16(1), 59–70 (2023)

    Google Scholar 

  127. K.M. Raheef et al., Gravimetric and density functional theory investigations on 4-amioantipyrin schiff base as an inhibitor for mild steel in HCl solution. Prog. Color Colorants Coat. 16(3), 255–269 (2023)

    Google Scholar 

  128. K. Neha, S. K. Singh, S. Kumar. Effect of degradations and their possible outcomes in PV cells. Renew. Energy Syst. Model. Optim. Appl. pp. 469–515 (2022)

  129. S.H. Reddy, F.D. Giacomo, A.D. Carlo, Low-temperature-processed stable perovskite solar cells and modules: a comprehensive review. Adv. Energy Mater. 12(13), 2103534 (2022)

    Article  Google Scholar 

  130. M. Agarwal, K. Varahramyan, S. Shrestha. Copper indium gallium selenium (CIGS) nanoparticles-based thin film solar cells (2022)

  131. S. Voswinckel, T. Mikolajick, V. Wesselak, Influence of the active leakage current pathway on the potential induced degradation of CIGS thin film solar modules. Sol. Energy 197, 455–461 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Universiti Kebangsaan Malaysia and University of Technology/Iraq for providing the facilities for this work.

Funding

This research was funded by Universiti Kebangsaan Malaysia, grant number GUP-2020–012 “Malaysia”.

Author information

Authors and Affiliations

Authors

Contributions

AAA contributed to Conceptualization, Writing—original draft preparation and Methodoloygy. LMS contributed to Formal analysis, Data curation and Validation. AAA and WKAA contributed to Investigation, writing—review and editing and Resources. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ahmed Alamiery or Wan Nor Roslam Wan Isahak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, L.M., Alamiery, A., Isahak, W.N.R.W. et al. Corrosion in solar cells: challenges and solutions for enhanced performance and durability. J Opt (2023). https://doi.org/10.1007/s12596-023-01277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01277-9

Keywords

Navigation