Log in

Multi-image encryption based on singular value decomposition ghost imaging and RSA public-key cryptography

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A multi-image encryption method based on singular value decomposition ghost imaging and RSA public-key cryptography (RSVDGI) is proposed. Radon transform (RT) is first carried out on the target images to obtain Radon spectrums, and then, QR encoding is performed on it. The QR-coded image is used as a plaintext image for singular value decomposition ghost imaging (SVDGI) encryption to obtain the corresponding ciphertext. The public key generated by the RSA algorithm is used to encrypt the keys of the above process. Only the receiver with the private key of the RSA algorithm can successfully extract the keys, decrypt the ciphertext encrypted by SVDGI, and finally reconstruct the required target images. QR code has good error correction performance. Thus, it can restore the target images in high quality within the range of its error correction ability. RSA public-key cryptosystem solves the problem of key management in ghost imaging system and improves the security of encryption system. The feasibility, security, and robustness of this method are verified by computer simulations and optical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20(7), 767 (1995)

    Article  ADS  Google Scholar 

  2. F. Ferri, D. Magatti, L.A. Lugiato et al., Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010)

    Article  ADS  Google Scholar 

  3. Z. Huang, S. Cheng, L. Gong et al., Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Opt. Lasers Eng. 124, 105821 (2020)

    Article  Google Scholar 

  4. S. Jiao, J. Feng, Y. Gao et al., Visual cryptography in single-pixel imaging. Opt. Express 28(5), 7301 (2020)

    Article  ADS  Google Scholar 

  5. C. Duan, J. Zhou, L. Gong et al., New color image encryption scheme based on multi-parameter fractional discrete Tchebyshev moments and nonlinear fractal permutation method. Opt. Lasers Eng. 150, 106881 (2022)

    Article  Google Scholar 

  6. T.B. Pittman, Y.H. Shih, D.V. Strekalov et al., Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), 3429 (1995)

    Article  ADS  Google Scholar 

  7. R.S. Bennink, S.J. Bentley, R.W. Boyd, Two-Photon coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)

    Article  ADS  Google Scholar 

  8. A. Gatti, E. Brambilla, M. Bache et al., Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93(9), 093602 (2004)

    Article  ADS  Google Scholar 

  9. D. Zhang, Y. Zhai, L. Wu et al., Correlated two-photon imaging with true thermal light. Opt. Lett. 30(18), 2354 (2005)

    Article  ADS  Google Scholar 

  10. P. Zerom, Z. Shi, M.N. O’Sullivan et al., Thermal ghost imaging with averaged speckle patterns. Phys. Rev. A 86(6), 063817 (2012)

    Article  ADS  Google Scholar 

  11. J.H. Shapiro, Computational ghost imaging. Phys. Rev. A 78, 061802 (2008)

    Article  ADS  Google Scholar 

  12. P. Clemente, V. Durán, V. Torres-Company et al., Optical encryption based on computational ghost imaging. Opt. Lett. 35(14), 2391 (2010)

    Article  ADS  Google Scholar 

  13. O. Katz, Y. Bromberg, Y. Silberberg, Compressive ghost imaging. Appl. Phys. Lett. 95(13), 131110 (2009)

    Article  ADS  Google Scholar 

  14. X. Li, X. Meng, X. Yang et al., Multiple-image encryption based on compressive ghost imaging and coordinate sampling. IEEE. Photonics. J. 8(4), 1 (2016)

    Article  Google Scholar 

  15. X. Li, X. Meng, Y. Wang et al., Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain. Opt. Lasers Eng. 96, 7 (2017)

    Article  Google Scholar 

  16. Y. Kang, L. Zhang, H. Ye et al., Camouflaged optical encryption based on compressive ghost imaging. Opt. Lasers Eng. 134, 106154 (2020)

    Article  Google Scholar 

  17. S. Zhao, X. Yu, L. Wang et al., Secure optical encryption based on ghost imaging with fractional Fourier transform. Opt. Commun. 474, 126086 (2020)

    Article  Google Scholar 

  18. A. Hazer, R. Yildirim, A review of single and multiple optical image encryption techniques. J. Opt. 23(11), 113501 (2021)

    Article  ADS  Google Scholar 

  19. L. Wang, S. Zhao, Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform. Photonics. Res. 4(6), 240 (2016)

    Article  Google Scholar 

  20. L. Zhang, X. Yuan, K. Wang et al., Multiple-image encryption mechanism based on ghost imaging and public key cryptography. IEEE. Photonics. J. 11(4), 1 (2019)

    Google Scholar 

  21. X. Yuan, L. Zhang, J. Chen et al., Multiple-image encryption scheme based on ghost imaging of Hadamard matrix and spatial multiplexing. Appl. Phys. B 125(9), 174 (2019)

    Article  ADS  Google Scholar 

  22. X. Zhang, X. Meng, X. Yang et al., Singular value decomposition ghost imaging. Opt. Express 26(10), 12948 (2018)

    Article  ADS  Google Scholar 

  23. S. Wang, X. Meng, Y. Yin et al., Optical image watermarking based on singular value decomposition ghost imaging and lifting wavelet transform. Opt. Lasers Eng. 114, 76 (2019)

    Article  Google Scholar 

  24. X. Liu, X. Meng, Y. Wang et al., Optical multilevel authentication based on singular value decomposition ghost imaging and secret sharing cryptography. Opt. Lasers Eng. 137, 106370 (2021)

    Article  Google Scholar 

  25. S. Zhao, L. Wang, W. Liang et al., High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique. Opt. Commun. 353, 90 (2015)

    Article  ADS  Google Scholar 

  26. P. Kumar, A. Fatima, N.K. Nishchal, Image encryption using phase-encoded exclusive-OR operations with incoherent illumination. J. Opt. 21(6), 065701 (2019)

    Article  ADS  Google Scholar 

  27. P. Kumar, N.K. Nishchal, Enhanced exclusive-OR and quick response code-based image encryption through incoherent illumination. Appl. Opt. 58(6), 1408 (2019)

    Article  ADS  Google Scholar 

  28. P.A. Cheremkhin, N.N. Evtikhiev, V.V. Krasnov et al., New customizable digital data container for optical cryptosystems. J. Opt. 23(11), 115701 (2021)

    Article  ADS  Google Scholar 

  29. Z. Liu, Q. Guo, L. Xu et al., Double image encryption by using iterative random binary encoding in gyrator domains. Opt. Express 18(11), 12033 (2010)

    Article  ADS  Google Scholar 

  30. Z. Liu, H. Chen, T. Liu et al., Double-image encryption based on the affine transform and the gyrator transform. J. Opt. 12(3), 035407 (2010)

    Article  ADS  Google Scholar 

  31. L. Zhang, Y. Wang, H. Ye et al., Camouflaged encryption mechanism based on sparse decomposition of principal component orthogonal basis and ghost imaging. Opt. Eng. 60(1), 013110 (2021)

    ADS  Google Scholar 

  32. Y. Kang, L. Zhang, D. Zhang, Optical encryption based on ghost imaging and public key cryptography. Opt. Lasers Eng. 111, 58 (2018)

    Article  Google Scholar 

  33. Y. Tao, X. Yang, X. Meng et al., Hybrid cryptosystem based on plaintext related computational ghost imaging encryption and elliptic curve algorithm. J. Opt. 22(6), 065701 (2020)

    Article  ADS  Google Scholar 

  34. D. Shi, J. Huang, W. Meng et al., Radon single-pixel imaging with projective sampling. Opt. Express 27(10), 14594 (2019)

    Article  Google Scholar 

  35. Y. Kashter, O. Levi, A. Stern, Optical compressive change and motion detection. Appl. Opt. 51(13), 2491 (2012)

    Article  ADS  Google Scholar 

  36. H. Hovland, Tomographic scanning imager. Opt. Express 17(14), 11371 (2009)

    Article  ADS  Google Scholar 

  37. L. Zhang, Y. Wang, D. Zhang, Research on multiple-image encryption mechanism based on Radon transform and ghost imaging. Opt. Commun. 504, 127494 (2022)

    Article  Google Scholar 

  38. S. Yuan, X. Zhou, M.S. Alam et al., Information hiding based on double random-phase encoding and public-key cryptography. Opt. Express 17(5), 3270 (2009)

    Article  Google Scholar 

  39. N.K. Nishchal, Optical Cryptosystems (Bristol IOP Press, UK, 2019)

    Book  Google Scholar 

  40. T. Zhao, Q. Ran, Y. Chi, Image encryption based on nonlinear encryption system and public-key cryptography. Opt. Commun. 338, 64 (2015)

    Article  ADS  Google Scholar 

  41. L. Gong, K. Qiu, C. Deng et al., An optical image compression and encryption scheme based on compressive sensing and RSA algorithm. Opt. Lasers Eng. 121, 169 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds of Shandong University [grant number 2015GN031], the Bei**g Natural Science Foundation [grant number 4222081], and the National Natural Science Foundation of China under Grant [grant numbers 11574311, 61775121].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ulun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yang, X., Meng, X. et al. Multi-image encryption based on singular value decomposition ghost imaging and RSA public-key cryptography. J Opt 52, 527–538 (2023). https://doi.org/10.1007/s12596-022-01011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01011-x

Keywords

Navigation