Log in

Studies on Geomicrobiology in some Indian Caves

  • Original Article
  • Published:
Journal of the Geological Society of India

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  • Amann, R.I., Ludwig, W., Schleifer, K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., v.59, pp.143–169.

    Article  Google Scholar 

  • Banerjee, S., Joshi, S.R. (2013) Insights into cave architecture and the role of bacterial biofilm. Proc. Natl. Acad. Sci. India B, v.83(3), pp.277–290.

    Google Scholar 

  • Banerjee, S., Joshi, S.R. (2015) Mineralogical footprints of bacterial biofilms associated with Labit cave, a part of the longest cave system in India. Geomicrobiol. Jour., v.33(8), pp.699–708.

    Article  Google Scholar 

  • Banerjee, S., Joshi, S.R. (2016) Culturable bacteria associated with the caves of Meghalaya in India contribute to speleogenesis. Jour. Cave Karst Stud., v.78(3), pp.144–157.

    Article  Google Scholar 

  • Banfield, J.F., Nealson, K.H. (1997) Geomicrobiology: Interactions between microbes and minerals. Rev. Mineral., v.35: Washington, D.C., Mineralogical Society of American, 448p.

    Google Scholar 

  • Barton, H.A. (2006) Introduction to cave microbiology: A review for the non-specialist. Jour. Cave Karst Stud., v.68(2), pp.43–54.

    Google Scholar 

  • Barton, H.A., Jurado, V. (2007) What’s up down there? Microbial diversity in caves. Microbe, v.2, pp.132–138.

    Google Scholar 

  • Barton, H.A., Taylor, M.R., Pace, N.R. (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol. Jour., v.21, pp.11–20.

    Article  Google Scholar 

  • Barton, H.A. (2020) Combating antibiotic resistance through cave exploration. Published in I’m a Geographer, 27th November 2020.

  • Barton, H.A., Northup, D.E. (2007) Geomicrobiology in cave environments: past, current, and future perspectives. Jour. Cave Karst Stud., v.67, pp.27–38.

    Google Scholar 

  • Barton, H.A., Taylor, M.R., Pace, N.R. (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol. Jour., v.21, pp.11–20.

    Article  Google Scholar 

  • Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J.A. (2005) Role of microbial community in stalactite formation, Sahastradhara caves, Dehradun, India. Curr. Sci., v.88(8), pp.1305–1308.

    Google Scholar 

  • Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J.A. (2006) Microbially induced Calcite precipitation by culture experiments — Possible origin for Stalactites in Sahastradhara, Dehradun, India. Curr. Sci., v.90, pp.58–64.

    Google Scholar 

  • Baskar, S., Baskar, R., Lee, N., Theophilus, P.K. (2009a) Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. Environ. Geol., v.57(5), pp.1169–1186.

    Article  Google Scholar 

  • Baskar, S., Baskar, R. and Barton, H.A. (2009b) Cave Geomicrobiology in the Indian context. Curr. Sci., v.97(5), pp.620–622.

    Google Scholar 

  • Baskar, S. and Baskar, R. (2009c) Geobiology and Geomicrobiology: Importance and need for studies in the Indian context, Curr. Sci., v.96(1), pp.200–201.

    Google Scholar 

  • Baskar, S., Baskar, R., Routh, J. (2011) Biogenic Evidences of Moonmilk deposits in the Krem Mawmluh Cave, Meghalaya, India. Geomicrobiol. Jour., v.28(3), pp.252–265.

    Article  Google Scholar 

  • Baskar, S., Baskar, R., Routh, J. (2014) Speleothems from Sahastradhara caves in Siwalik Himalaya, India: Possible biogenic inputs. Geomicrobiol. Jour., v.31(8), pp.664- 681.

    Article  Google Scholar 

  • Baskar, S., Baskar, R., Thorseth, I.H., Ovreas, L., Pedersen, R.B. (2012) Microbial iron precipitation associated with a neutrophilic spring of Borra caves, Vishakapatanam, India. Astrobiol. Jour., v.12(4), pp.327–346.

    Article  Google Scholar 

  • Baskar, S., Baskar, R. (2014) A summary of some microbes identified from different Indian caves and their possible role in mineral formations. Ambient Sci., v.1(2), pp.9–16.

    Article  Google Scholar 

  • Baskar, S., Chalia, S., Baskar, R. (2017) Microbes Identified from Some Caves in Chattisgarh and Their Biocalcifying Abilities. Ambient Science, published by National cave research and protection organization, India. v.4(2), pp.38–39.

    Google Scholar 

  • Baskar, S., Chalia, S., Baskar, R. (2018) Calcite precipitation by Rhodococcus sp. isolated from Kotumsar cave, Chattisgarh, India. Curr. Sci., v. 114(5), pp.1063–1074.

    Article  Google Scholar 

  • Baskar, S., Routh, J., Baskar, R., Kumar, A. Miettinen, H., Itävaara, M. (2016) Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiol. Jour., doi:https://doi.org/10.1080/01490451.2015.1127447.

  • Biswas, J. (2009) The biodiversity of Krem Mawkhyrdop of Meghalaya, India, on the verge of extinction. Curr. Sci., v.96, pp.904–910.

    Google Scholar 

  • Biswas, J. and Ramteke, A.K. (2008) Timed feeding synchronizes circadian rhythm in vertical swimming activity in cave loach. Nemacheilusevezardi, v.39(5), pp.405–412.

    Google Scholar 

  • Biswas, J. (2022) Biospeleology: The Biology of cave Habitats from India. In: Biswas, J. (Ed.), Cave science insight from the Indian subcontinent. National Cave Research and Protection Organization, India, pp.55–86.

    Google Scholar 

  • Boston, P.J., Spilde, M.N., Northup, D.E., Melim, L.A., Soroka, D.S., Kleina, L.G., Lavoie, K.H., Hose, L.D., Mallory, L.M., Dahm, C.N., Crossey, L.J., Schelble, R.T. (2001) Cave biosignature suites: Microbes, minerals and Mars. Astrobiol. Jour., v.1, pp.25–55.

    Article  Google Scholar 

  • Boston, P.J. (2000) Life below and life “out there.” Geotimes, v.45, pp.14–17.

    Google Scholar 

  • Boston, P.J., Ivanov, M.V., McKay, C.P. (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus, v.95(2), pp.300–308.

    Article  Google Scholar 

  • Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M.P., Lepidi, A. (2004) Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L’Aquila-Italy). Geomicrobiol. Jour., v.21, pp.497–509.

    Article  Google Scholar 

  • Cañaveras, J.C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J.M., Saiz-Jimenez, C. (2006), On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, v.93, pp.27–32.

    Article  Google Scholar 

  • Chalia, S., Baskar, S., Prasad, M., Baskar, R., Ranjan, K. (2017) Biomineralization abilities of Cupriavidus strain and Bacillus subtilis strains in vitro isolated from speleothems, Rani cave, Chattisgarh, India. Geomicrobiol. Jour., v.34(9), pp.737–752.

    Article  Google Scholar 

  • Chelius, M.K., Moore, J.C. 2004. Molecular phylogenetic analysis of Archaea and Bacteria in Wind Cave, South Dakota. Geomicrobiol. Jour., v.21, pp.123–134.

    Article  Google Scholar 

  • Culver, D.C. (1982) Cave Life: Evolution and Ecology. Harvard Univ. Press.

  • Cunningham, K.I., Northup, D.E., Pollastro, R.M., Wright, W.G., LaRock, E.J. (1995) Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ. Geol., v.25, pp.2–8.

    Article  Google Scholar 

  • Deshmukh, M. (1994) Influence of geology on the localization of ancient caves. Jour. Geol. Soc. India, v.44, pp.213–217.

    Google Scholar 

  • Ehrlich, H.L. (1998) Geomicrobiology: its significance for geology. Earth Sci. Rev., v.45(1), pp.45–60.

    Article  Google Scholar 

  • Engel, A.S., Paoletti, M.G., Beggio, M., Dorigo, L., Pamio, A., Gomero, T., Furlan, C., Brilli, M., Bertoni, R., Dreon, A.L., Squartini, A. (2013) Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web. Internat. Jour. Speleology, v.42(3), pp.181–92.

    Article  Google Scholar 

  • Engel, A.S., Stern, L.A., Bennett, P.C. (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology, v.32, pp.369–372.

    Article  Google Scholar 

  • Engel, A.S., Meisinger, D.B., Porter, M.L., Payn, R.A., Schmid, M., Stern, L.A., Schleifer, K.H., Lee, N.M. (2010) Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME Jour., v.4, pp.98–110.

    Article  Google Scholar 

  • Engel, S.E., Lee, N., Porter, M.L., Stern, A.L., Bennett, P.C. and Wagner, M. (2003) Filamentous “Epsilonproteobacteria” Dominate Microbial Mats from Sulfidic Cave Springs. Appl. Environ. Microbiol., v.69, 5503.

    Article  Google Scholar 

  • Frey, D.G. (1963) Limnology in North America, University of Wisconsin Press, Madison, p.734.

    Google Scholar 

  • Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., Selmo, E.M. (2002) Aragonite-calcite relationships in speleothems (Grotte De Clamouse, France): Environment, fabrics and carbonate geochemistry. Jour. Sediment. Res., v.72, pp.687–699.

    Article  Google Scholar 

  • Galvan, G. (1997) Graduation thesis, University of Ljubljana, Ljubljana.

    Google Scholar 

  • Groth, I., Schumann, P., Laiz, L., Sanchez-Moral, S., Cañaveras, JC, Saiz-Jimenez, C. (2001) Geomicrobiological study of the Grottadei Cervi, Porto Badisco, Italy. Geomicrobiol. Jour., v.18, pp.241–58.

    Article  Google Scholar 

  • Groth, I., Vettermann, R., Schuetze, B., Schumann, P., Saiz-Jimenez, C.J. (1999) Actinomycetes in karstic caves Northern Spain (Altamira and Tito Bustillo). Jour. Microbiol. Meth., v.36, pp.115–122.

    Article  Google Scholar 

  • Gunde-Cimerman, N., Zalar, P., Jeram, S. (1998) Mycoflora of cave cricket Troglophilus neglectus cadavers. Mycopathologia, v.141, pp.111–114.

    Article  Google Scholar 

  • Hammes, F., Verstraete, W. (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol., v.1, pp.3–7.

    Article  Google Scholar 

  • Harries, D.B., Ware, F.J., Fischer, C.W., Biswas, J, Khapran-Daly, B.D. (2010) A Review of the Biospeleology of Meghalaya, India. Jour. Cave Karst Stud., v.70(3), pp.163–176.

    Google Scholar 

  • Hopper, M., Flies, C., Pohl, W., Gunz, I.B., Schneider, J. (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ. Geol., v. 46, pp.421–428.

    Google Scholar 

  • Jones, B. (2001) Microbial activity in caves — a geological perspective. Geomicrobiol. Jour., v.18, pp.345–357.

    Article  Google Scholar 

  • Laiz, L, Groth, I, Gonzalez, I, Saiz-Jimenez, C. (1999) Microbiological study of the drip** waters in Altamira Cave (Santillana del Mar, Spain). Jour. Microbiol. Methods v.36, pp.129–138.

    Article  Google Scholar 

  • Laiz, L., Pinar, G., Lubitz, W., Saiz, Jimenez, C. (2003) Monitoring the colonization of monuments by bacteria: Cultivation versus molecular methods. Environ. Microbiol., v.5, pp.72–74.

    Article  Google Scholar 

  • McKay, C.P., Ivanov, M., Boston, P.J. (1994) Considering the improbable: Life underground on Mars: The Planetary Report. Planet Rep., v. 14, pp.13–15.

    Google Scholar 

  • Meisinger, D.B., Zimmermann, J., Ludwig, W., Schleifer, K.H., Wanner, G., Schmid, M., Bennett, P.C., Engel, A.S., Lee, N.M. (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolitho-autotrophically based cavesystem (Lower Kane Cave, WY, USA). Environ. Microbiol., v.9(6), pp.1523–1534.

    Article  Google Scholar 

  • Melim, L., Shinglman, K.M., Boston, P.J., Northup, D.E., Spilde, M.N., Queen, J.M. (2001) Evidence for microbial involvement in pool finger precipitations, Hidden cave, New Mexico. Geomicrobiol. Jour., v.18, pp.311–329.

    Article  Google Scholar 

  • Mudgil, D., Baskar, S., Baskar, R., Paul, D. and Shouche, Y.S. (2018) Biomineralization potential of Bacillus subtilis, Rummeliibacillus stabekisii and Staphylococcus epidermidis strains in vitro isolated from speleothems, Khasi hill caves, Meghalaya, India. Geomicrobiol. Jour. v.35(8), pp.675–694.

    Article  Google Scholar 

  • Newman, D.K., Banfield, J.F. (2002) Geomicrobiology: molecular-scale interactions underpin biogeochemical systems. Science, v.296, pp.1071–1077.

    Article  Google Scholar 

  • Northup, D.E., Lavoie, K.H. (2001) Geomicrobiology of Caves: A Review. Geomicrobiol. Jour. v.18, pp.199–222.

    Article  Google Scholar 

  • Northup, D.E., Reysenbach, A.L., Pace, N.R. (1997) Microorganisms and speleothems. In: Hill, C.A., and Forti, P. (Eds.), Cave Minerals of the World, 2nd ed, National Speleological Society, Huntsville, pp.261–266.

    Google Scholar 

  • Poulson, T.L., Lavoie, K.H. (2000) The trophic basis of subsurface ecosystems. In: DC. Wilkens, DC. Culver, WF. Humphreys (Eds.), 30. Elsevier, Amsterdam, pp.231–249.

  • Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K.B., Gonzalez-Munoz, M.T. (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ Microbiol., v.69, pp.2182–2193.

    Article  Google Scholar 

  • Roussel, E.G., Cambon Bonavita, M.A., Querellou, J., Cragg, B.A., Webster, G., Prieur, D, Parkes, R.J. 2008. Extending the sub-seafloor biosphere. Science, v.320, 1046.

    Article  Google Scholar 

  • Schabereiter-Gurtner, C., Saiz-Jimenez, C., Pinar, G., Lubitz, W., Rolleke, S. (2002) FEMS Microbiol. Lett., v.211, pp.7–11.

    Google Scholar 

  • Shoji R, Folk RL. (1964) Surface morphology of some limestone types as revealed by electron microscope. Jour. Sediment. Petrol., v.34, pp.144–155.

    Google Scholar 

  • Simon, K.S., Benfield, E.F., Macko, S.A. (2003) Food webstructure and the role of epilithic biofilms in cave streams. Ecological Society of Amer., v.84, pp.2395–2406.

    Google Scholar 

  • Timmis, K., de Vos, W.M., Ramos, J.L., Vlaeminck, S.E., Prieto, A., Danchin, A., Verstraete, W., de Lorenzo, V., Lee, S.Y., Brüssow, H., Yimmis, J.K., Singh, B.K. (2017) The contribution of microbial biotechnology to sustainable development goals. Microb. Biotechnol., v.10, pp.984–987.

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2018 (United Nations, 2018).

  • Whitman, W.B., Coleman, D.C., Wiebe, WJ. (1998). Prokaryotes: The unseen majority, Proc. Natl. Acad. Sci., USA., v.95, pp.6578–6583.

    Article  Google Scholar 

  • Zalar, P., Hennebert, G.L., Gunde-Cimerman, N, Cimerman, A. (1997) Mucor troglophilus, a new species from. cave crickets. Mycotaxon, v.65, pp.507–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Baskar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskar, S., Baskar, R. Studies on Geomicrobiology in some Indian Caves. J Geol Soc India 98, 1380–1384 (2022). https://doi.org/10.1007/s12594-022-2185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-022-2185-9

Navigation