Log in

Bifurcation Analysis of a Predator–Prey Model with Allee Effect and Fear Effect in Prey and Hunting Cooperation in Predator

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Studying predator–prey interactions with the help of mathematical modeling is helpful in understanding the mechanism, making informed decisions about their management and conservation, and estimating the behavior and dynamics of ecological systems. In this paper, we have explored the dynamics of a predator–prey model with the fear effect and Allee effect in prey and hunting cooperation in predator species. First, we prove the well-posedness of the system, which is followed by results related to the existence and stability of biologically feasible equilibrium points for the weak Allee effect as well as for the strong Allee effect. We have shown that the model exhibits a variety of bifurcations, including saddle-node, transcritical, and Hopf-bifurcation. Numerical simulation reveals that the conversion rate of predator plays an important role in the stability switching. It is observed that fear has both stabilizing and destabilizing effects depending on hunting cooperation and conversion efficiency of predators. The system experiences persistence or bistability for the weak Allee effect, whereas bistability and tristability are observed in the presence of strong Allee effect. We found that as the hunting cooperation increases, the density of prey species reduces. On the other hand, moderate cooperation is beneficial with the strong Allee effect, but the high level of hunting cooperation may force one or both species to become extinct. However, for the weak Allee effect, when the conversion rate of predators is greater than the mortality rate, system cannot collapse even with the high amount of hunting cooperation. Therefore, the theoretical and numerical results of our paper may provide some useful biological insight to estimate the behavior of species and may have a potential impact on population management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Allee, W., Bowen, E.S.: Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61(2), 185–207 (1932)

    Article  Google Scholar 

  2. Allee, W., Wilder, J.: Group protection for Euplanaria dorotocephala from ultra-violet radiation. Physiol. Zool. 12(2), 110–135 (1939)

    Article  Google Scholar 

  3. Altendorf, K.B., Laundré, J.W., González, C.A.L., Brown, J.S.: Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82(2), 430–439 (2001)

    Article  Google Scholar 

  4. Alves, M.T., Hilker, F.M.: Hunting cooperation and allee effects in predators. J. Theor. Biol. 419, 13–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arancibia-Ibarra, C., Gonzalez-Olivares, E.: A modified Leslie–Gower predator-prey model with hyperbolic functional response and Allee effect on prey. In: BIOMAT 2010 International Symposium on Mathematical and Computational Biology, pp. 146–162 (2011)

    Google Scholar 

  6. Arancibia-Ibarra, C., Flores, J.D., Pettet, G., Van Heijster, P.: A Holling–Tanner predator–prey model with strong allee effect. Int. J. Bifurc. Chaos 29(11), 1930032 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340 (1975)

    Article  Google Scholar 

  8. Berec, L.: Impacts of foraging facilitation among predators on predator–prey dynamics. Bull. Math. Biol. 72(1), 94–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berec, L., Angulo, E., Courchamp, F.: Multiple allee effects and population management. Trends Ecol. Evol. 22(4), 185–191 (2007)

    Article  Google Scholar 

  10. Brown, J.S., Laundré, J.W., Gurung, M.: The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80(2), 385–399 (1999)

    Article  Google Scholar 

  11. Cong, P., Fan, M., Zou, X.: Dynamics of a three-species food chain model with fear effect. Commun. Nonlinear Sci. Numer. Simul. 99, 105809 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grou** on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999)

    Article  MATH  Google Scholar 

  13. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. OUP, Oxford (2008)

    Book  Google Scholar 

  14. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)

    Article  Google Scholar 

  15. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  16. Davies, A.B., Cromsigt, J.P., Tambling, C.J., Le Roux, E., Vaughn, N., Druce, D.J., Marneweck, D.G., Asner, G.P.: Environmental controls on African herbivore responses to landscapes of fear. Oikos 130(2), 171–186 (2021)

    Article  Google Scholar 

  17. Ddumba, H., Mugisha, J., Gonsalves, J.W., Kerley, G.: The role of predator fertility and prey threshold bounds on the global and local dynamics of a predator–prey model with a prey out-flux dilution effect. Appl. Math. Comput. 218(18), 9169–9186 (2012)

    MathSciNet  MATH  Google Scholar 

  18. DeAngelis, D.L., Goldstein, R., O’Neill, R.V.: A model for tropic interaction. Ecology 56(4), 881–892 (1975)

    Article  Google Scholar 

  19. Deppe, A.M., Kushnick, G.: Olfactory predator recognition in the brown mouse lemur (Microcebus rufus) in Ranomafana National Park, Madagascar. Am. J. Primatol. 82(10), e23184 (2020)

    Article  Google Scholar 

  20. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14(2), 147–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. González-Olivares, E., Cabrera-Villegas, J., Córdova-Lepe, F., Rojas-Palma, A.: Competition among predators and allee effect on prey, their influence on a Gause-type predation model. Math. Probl. Eng. 1–19, 2019 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Grinnell, J., Packer, C., Pusey, A.E.: Cooperation in male lions: kinship, reciprocity or mutualism? Anim. Behav. 49(1), 95–105 (1995)

    Article  Google Scholar 

  23. Hastings, A.: Population Biology: Concepts and Models. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  24. Hearn, G.W., Berghaier, R.W., George, D.D.: Evidence for social enhancement of reproduction in two Eulemur species. Zoo Biol. (Published in affiliation with the American Zoo and Aquarium Association) 15(1), 1–12 (1996)

    Google Scholar 

  25. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly1. Can. Entomol. 91(5), 293–320 (1959)

    Article  Google Scholar 

  26. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1959)

    Article  Google Scholar 

  27. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, Y., Zhu, Z., Li, Z.: Modeling the allee effect and fear effect in predator–prey system incorporating a prey refuge. Adv. Differ. Equ. 2020(1), 1–13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hutson, V.: A theorem on average Liapunov functions. Monatsh. Math. 98(4), 267–275 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hutson, V.: The existence of an equilibrium for permanent systems. Rocky Mt. J. Math. 20(4), 1033–1040 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kooij, R.E., Zegeling, A.: Qualitative properties of two-dimensional predator–prey systems. Nonlinear Anal. Theory Methods Appl. 29(6), 693–715 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  33. Kuang, Y., Freedman, H.: Uniqueness of limit cycles in Gause-type models of predator–prey systems. Math. Biosci. 88(1), 67–84 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  35. Lührs, M.-L., Dammhahn, M.: An unusual case of cooperative hunting in a solitary carnivore. J. Ethol. 28, 379–383 (2010)

    Article  Google Scholar 

  36. May, R.M.: Limit cycles in predator–prey communities. Science 177(4052), 900–902 (1972)

    Article  Google Scholar 

  37. Mondal, N., Barman, D., Alam, S.: Impact of adult predator incited fear in a stage-structured prey–predator model. Environ. Dev. Sustain. 23(6), 9280–9307 (2021)

    Article  Google Scholar 

  38. Mukherjee, D.: Role of fear in predator–prey system with intraspecific competition. Math. Comput. Simul. 177, 263–275 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Murray, J.D.: Mathematical Biology: I. An Introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  40. Pal, S., Majhi, S., Mandal, S., Pal, N.: Role of fear in a predator–prey model with Beddington–Deangelis functional response. Z. Nat. A 74(7), 581–595 (2019)

    Google Scholar 

  41. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019)

    Article  MATH  Google Scholar 

  42. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Fear effect in prey and hunting cooperation among predators in a Leslie–Gower model. Math. Biosci. Eng. 16(5), 5146–5179 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    Book  MATH  Google Scholar 

  44. Qiao, T., Cai, Y., Fu, S., Wang, W.: Stability and Hopf bifurcation in a predator–prey model with the cost of anti-predator behaviors. Int. J. Bifurc. Chaos 29(13), 1950185 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ripple, W.J., Larsen, E.J.: Historic aspen recruitment, elk, and wolves in northern Yellowstone National Park, USA. Biol. Conserv. 95(3), 361–370 (2000)

    Article  Google Scholar 

  46. Sasmal, S.K.: Population dynamics with multiple allee effects induced by fear factors—a mathematical study on prey–predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sasmal, S.K., Takeuchi, Y.: Dynamics of a predator–prey system with fear and group defense. J. Math. Anal. Appl. 481(1), 123471 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sen, M., Banerjee, M.: Rich global dynamics in a prey-predator model with allee effect and density dependent death rate of predator. Int. J. Bifurc. Chaos 25(03), 1530007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sen, M., Banerjee, M., Takeuchi, Y.: Influence of allee effect in prey populations on the dynamics of two-prey-one-predator model. Math. Biosci. Eng. 15(4), 883 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21(6), 811–833 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shang, Z., Qiao, Y.: Bifurcation analysis of a Leslie-type predator-prey system with simplified Holling type IV functional response and strong allee effect on prey. Nonlinear Anal. Real World Appl. 64, 103453 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stander, P.E.: Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29(6), 445–454 (1992)

    Article  Google Scholar 

  53. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the allee effect? Oikos 87(1), 185–190 (1999)

    Article  Google Scholar 

  54. Sugie, J., Kohno, R., Miyazaki, R.: On a predator-prey system of Holling type. Proc. Am. Math. Soc. 125(7), 2041–2050 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. Suraci, J.P., Clinchy, M., Dill, L.M., Roberts, D., Zanette, L.Y.: Fear of large carnivores causes a trophic cascade. Nat. Commun. 7(1), 10698 (2016)

    Article  Google Scholar 

  56. Van Voorn, G.A., Hemerik, L., Boer, M.P., Kooi, B.W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong allee effect. Math. Biosci. 209(2), 451–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Vishwakarma, K., Sen, M.: Role of allee effect in prey and hunting cooperation in a generalist predator. Math. Comput. Simul. 190, 622–640 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  58. Vishwakarma, K., Sen, M.: Influence of allee effect in prey and hunting cooperation in predator with Holling type-III functional response. J. Appl. Math. Comput. 68, 249–269 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  59. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, vol. 2. Societá anonima tipografica" Leonardo da Vinci" (1927)

  60. Wang, J., Cai, Y., Fu, S., Wang, W.: The effect of the fear factor on the dynamics of a predator–prey model incorporating the prey refuge. Chaos 29(8), 083109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang, X., Tan, Y., Cai, Y., Wang, W.: Impact of the fear effect on the stability and bifurcation of a Leslie–Gower predator–prey model. Int. J. Bifurc. Chaos 30(14), 2050210 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, X., Zou, X.: Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wiggins, S., Wiggins, S., Golubitsky, M.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Berlin (2003)

    MATH  Google Scholar 

  65. **e, B., Zhang, N.: Influence of fear effect on a Holling type-III prey–predator system with the prey refuge. AIMS Math. 7(2), 1811–1830 (2022)

    Article  MathSciNet  Google Scholar 

  66. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  Google Scholar 

  67. Zhang, H., Cai, Y., Fu, S., Wang, W.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of first author is supported by Council of Scientific and Industrial Research (CSIR) under Grant Number: 09/1023(0038)/2020-EMR-I. The authors are thankful to the anonymous referees for their valuable suggestions which has significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Srivastava.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umrao, A.K., Srivastava, P.K. Bifurcation Analysis of a Predator–Prey Model with Allee Effect and Fear Effect in Prey and Hunting Cooperation in Predator. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00663-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00663-w

Keywords

Navigation