Log in

Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Detailed petrographic, geochemical (O-C-Sr isotopes) and fluid inclusion studies of the deeply buried Cambrian carbonates in the West-central Tarim Basin revealed three types of crystalline dolomites (fine-crystalline, nonplanar-a(s), dolomite (RD1), fine- to medium-crystalline, planar-e(s) dolomite (RD2), and medium- to coarse-crystalline, nonplanar-a dolomite (RD3)), medium- to coarse-crystalline, nonplanar-a saddle dolomite cement (CD) and early and later-stage calcite cement. The occurrence of RD1 along low-amplitude stylolites points to link with pressure dissolution by which minor Mg ions were likely released for replacive dolomitization during early- to intermediate-burial seawater dolomitization. The increasing crystal sizes of RD2 and RD3 with irregular overgrowth rims suggests intense recrystallization and replacement upon the RD1 or remaining precursor limestones by dolomitizing fluids during late intermediate burial dolomitization. The overlap of δ18O, δ13C and 87Sr/86Sr values of RD1-RD3 and CD dolomite with coeval seawater values, suggests that the principal dolomitizing fluids that precipitated these dolomites was connate (Cambrian) seawater preserved in the host limestones/dolomites. Their high 87Sr/86Sr ratios suggest influx of radiogenic strontium into the Cambrian seawater. Two regimes of fluid flow are recognized in the study area: firstly, influx of magnesium-rich higher-temperature basinal brines along deep-seated faults/fractures, resulting in cementation by CD dolomite. Secondly, the incursion of meteoric waters, mixing with ascending higher-temperature basinal brines, and an increase in Ca2+/Mg2+ ratio in the fluids probably results in the precipitation of calcite cement in vugs and fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Al-Aasm, I., 2003. Origin and Characterization of Hydrothermal Dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78/79: 9–15. https://doi.org/10.1016/s0375-6742(03)00089-x

    Article  Google Scholar 

  • Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-Nacl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-a

    Article  Google Scholar 

  • Burke, W. H., Denison, R. E., Hetherington, E. A., et al., 1982. Variation of Seawater 87Sr/86Sr Throughout Phanerozoic Time. Geology, 10(10): 516. https://doi.org/10.1130/0091-7613(1982)10<516:vosstp>2.0.co;2

    Article  Google Scholar 

  • Cai, C. F., Li, K. K., Li, H. T., et al., 2008. Evidence for Cross Formational Hot Brine Flow from Integrated 87Sr/86Sr, REE and Fluid Inclusions of the Ordovician Veins in Central Tarim, China. Applied Geochemistry, 23(8): 2226–2235. https://doi.org/10.1016/j.apgeochem.2008.03.009

    Article  Google Scholar 

  • Cai, C. F., **e, Z. Y., Worden, R. H., et al., 2004. Methane-Dominated Thermochemical Sulphate Reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: Towards Prediction of Fatal H2S Concentrations. Marine and Petroleum Geology, 21(10): 1265–1279. https://doi.org/10.1016/j.marpetgeo.2004.09.003

    Article  Google Scholar 

  • Cai, C. F., Zhang, C. M., Worden, R. H., et al., 2015. Application of Sulfur and Carbon Isotopes to Oil-Source Rock Correlation: A Case Study from the Tazhong Area, Tarim Basin, China. Organic Geochemistry, 83/84: 140–152

    Article  Google Scholar 

  • Cerling, T. E., Hay, R. L., 1986. An Isotopic Study of Paleosol Carbonates from Olduvai Gorge. Quaternary Research, 25(1): 63–78. https://doi.org/10.1016/0033-5894(86)90044-x

    Article  Google Scholar 

  • Chen, D. Z., Qing, H. R., Yang, C., 2004. Multistage Hydrothermal Dolomites in the Middle Devonian (Givetian) Carbonates from the Guilin Area, South China. Sedimentology, 51(5): 1029–1051. https://doi.org/10.1111/j.1365-3091.2004.00659.x

    Article  Google Scholar 

  • Chen, H. L., Yang, X. F., Dong, C. W., et al., 1997. Geological Thermal Events in Tarim Basin. Chinese Science Bullutin, 42(7): 580 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Choquette, P. W., Hiatt, E. E., 2008. Shallow-Burial Dolomite Cement: A Major Component of many Ancient Sucrosic Dolomites. Sedimentology, 55(2): 423–460. https://doi.org/10.1111/j.1365-3091.2007.00908.x

    Article  Google Scholar 

  • Davies, G. R., Smith, L. B. Jr., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641–1690. https://doi.org/10.1306/05220605164

    Article  Google Scholar 

  • Dickson, J. A. D., 1966. Carbonate Identification and Genesis as Revealed by Staining. Journal of Sedimentary Research, 36: 491–505. https://doi.org/10.1306/74d714f6-2b21-11d7-8648000102c1865d

    Google Scholar 

  • Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013a. In Situ Stable Isotopic Constraints on Dolomitizing Fluids for the Hydrothermally-Originated Saddle Dolomites at Ke**, Tarim Basin. Chinese Science Bulletin, 58(23): 2877–2882. https://doi.org/10.1007/s11434-013-5801-7

    Article  Google Scholar 

  • Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013b. Hydrothermal Alteration of Dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple Constraints from Petrology, Isotope Geochemistry and Fluid Inclusion Microthermometry. Marine and Petroleum Geology, 46: 270–286. https://doi.org/10.1016/j.marpetgeo.2013.06.013

    Article  Google Scholar 

  • Friedman, I., O’Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: Fleischer, M., ed., Data of Geochemistry. U.S. Geological Survey Professional Paper 440–KK. 12

    Book  Google Scholar 

  • Gao, Z. Q., Fan, T. L., 2014. Intra-Platform Tectono-Sedimentary Response to Geodynamic Transition along the Margin of the Tarim Basin, NW China. Journal of Asian Earth Sciences, 96: 178–193

    Article  Google Scholar 

  • Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. Short Course 31. Society for Sedimentary Geology, Tulsa. 199

    Book  Google Scholar 

  • Guo, C., Chen, D. Z., Qing, H. R., et al., 2016. Multiple Dolomitization and Later Hydrothermal Alteration on the Upper Cambrian-Lower Ordovician Carbonates in the Northern Tarim Basin, China. Marine and Petroleum Geology, 72: 295–316. https://doi.org/10.1016/j.marpetgeo.2016.01.023

    Article  Google Scholar 

  • Han, J. F., Sun, C. H., Wang, Z. Y., et al., 2017. Superimposed Compound Karst Model and Oil and Gas Exploration of Carbonate in Tazhong Uplift, Earth Science--Journal of China University of Geosciences, 42(3): 410–420 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Han, X. T., Bao, Z. Y., **e, S. Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science--Journal of China University of Geosciences, 41(1): 167–176 (in Chinese with English Abstract).

    Article  Google Scholar 

  • He, B. Z., Jiao, C. L., Xu, Z. Q., et al., 2016. The Paleotectonic and Paleogeography Reconstructions of the Tarim Basin and its Adjacent Areas (NW China) during the Late Early and Middle Paleozoic. Gondwana Research, 30: 191–206

    Article  Google Scholar 

  • Hitchon, B., Billings, G. K., Klovan, J. E., 1971. Geochemistry and Origin of Formation Waters in the Western Canada Sedimentary Basin—III. Factors Controlling Chemical Composition. Geochimica et Cosmochimica Acta, 35(6): 567–598. https://doi.org/10.1016/0016-7037(71)90088-3

    Article  Google Scholar 

  • Hu, M., Jia, Z., 1991. The Origin of ** Area, Tarim Basin. Journal of Jianghan Petroleum Institute, 13 (2): 10–17 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, M., Wu, Y., Hu, Z., et al.,2009. Deep Buried Dissolution of Ordovician Carbonates in Tazhong Area of Tarim Basin. Journal of Oil and Gas Technology, 31 (6): 49–54 (in Chinese with English Abstract)

    Google Scholar 

  • Jia, L. Q., Cai, C. F., Li, H. X., et al., 2016. Thermochemical Sulfate Reduction-Related Mesogenetic Dissolution of Deeply Buried Dolostone Reservoirs in the Tazhong Area. Acta Sedimentologica Sinica, 34(6): 1057–1067

    Google Scholar 

  • Jiang, L., Cai, C. F., Worden, R. H., et al., 2016. Multiphase Dolomitization of Deeply Buried Cambrian Petroleum Reservoirs, Tarim Basin, North-West China. Sedimentology, 63(7): 2130–2157. https://doi.org/10.1111/sed.12300

    Article  Google Scholar 

  • Jiang, L., Worden, R. H., Cai, C. F., 2015. Generation of Isotopically and Compositionally Distinct Water during Thermochemical Sulfate Reduction (TSR) in Carbonate Reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China. Geochimica et Cosmochimica Acta, 165: 249–262

    Article  Google Scholar 

  • Jiang, L., Worden, R. H., Cai, C. F., et al., 2014. Dolomitization of Gas Reservoirs: The Upper Permian Changxing and Lower Triassic Feixianguan Formations, Northeast Sichuan Basin, China. Journal of Sedimentary Research, 84(10): 792–815. https://doi.org/10.2110/jsr.2014.65

    Article  Google Scholar 

  • Kohout, F., Henry, H., Banks, J., 1977. Hydrogeology Related to Geothermal Conditions of the Floridan Plateau. In: Smith, K., L., Griffin, G., M. eds., The Geothermal Nature of the Florida Plateau. Florida Bureau of Geology Special Publication, 21: 1–34

    Google Scholar 

  • Land, L. S., 1983. The Application of Stable Isotopes to Studies of the Origin of Dolomite and to Problems of Diagenesis of Clastic Sediments. Stable Isotopes in Sedimentary Geology. SEPM Short Course, 10: 4-1–4-22

    Google Scholar 

  • Land, L. S., 1985. The Origin of Massive Dolomite. Journal of Geological Education, 33(2): 112–125. https://doi.org/10.5408/0022-1368-33.2.112

    Article  Google Scholar 

  • Lin, C., Yang, H., Liu, J., et al., 2009. Paleostructural Geomorphology of the Paleozoic Central Uplift Belt and Its Constraint on the Development of Depositional Facies in the Tarim Basin. Science in China Series D: Earth Sciences, 52(6), 823–834.

    Book  Google Scholar 

  • Machel, H. G., 2004. Concept and Models of Dolomitization. In: Braithwaite, C. J. R., Rizzi, G., Darke, G., eds., The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society of London Special Publication, 235: 7–63. https://doi.org/10.1144/GSL.SP.2004.235.01.02

    Google Scholar 

  • Machel, H. G., Buschkuehle, B. E., 2008. Diagenesis of the Devonian Southesk-Cairn Carbonate Complex, Alberta, Canada: Marine Cementation, Burial Dolomitization, Thermochemical Sulfate Reduction, Anhydritization, and Squeegee Fluid Flow. Journal of Sedimentary Research, 78(5): 366–389. https://doi.org/10.2110/jsr.2008.037

    Article  Google Scholar 

  • Machel, H. G., Cavell, P. A., 1999. Low-Flux, Tectonically-Induced Squeegee Fluid Flow (“Hot Flash”) into the Rocky Mountain Foreland Basin. Bulletin of Canadian Petroleum Geology, 47(4): 510–533

    Google Scholar 

  • Machel, H. G., Lonnee, J., 2002. Hydrothermal Dolomite—A Product of Poor Definition and Imagination. Sedimentary Geology, 152 (3/4): 163–171

    Google Scholar 

  • Mansurbeg, H., Morad, D. L., Othman, R., et al., 2016. Hydrothermal Dolomitization of the Bekhme Formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of Oil Migration and Degradation. Sedimentary Geology, 341: 147–162. https://doi.org/10.1016/j.sedgeo.2016.05.015

    Article  Google Scholar 

  • Merino, E., Canals, A., 2011. Self-Accelerating Dolomite-for-Calcite Replacement: Self-Organized Dynamics of Burial Dolomitization and Associated Mineralization. American Journal of Science, 311(7): 573–607. https://doi.org/10.2475/07.2011.01

    Article  Google Scholar 

  • Montañez, I. P., Osleger D. A., Banner, J. L., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. Inside Gas Today, 10 (5): 1–7

    Google Scholar 

  • Packard, J. J., Al-Aasm, I., 2002. Dolomite Discrimination in the D-1: Round up the Usual Suspects. Diamond Jubilee Convention, June, 2002, Calgary

    Google Scholar 

  • Qiu, N. S., Chang, J., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789–821. https://doi.org/10.1306/09071111029

    Article  Google Scholar 

  • Rosenbaum, J., Sheppard, S. M. F., 1986. An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures. Geochimica et Cosmochimica Acta, 50(6): 1147–1150. https://doi.org/10.1016/0016-7037(86)90396-0

    Article  Google Scholar 

  • Shao, L. Y., He, H., Peng, S. P., et al., 2002. Types and Origin of Dolomites of the Cambrian and Ordovician of Bachu Uplift Area in Tarim Basin. Journal of Palaeogeograpy, 4(2): 19–29 (in Chinese with English Abstract)

    Google Scholar 

  • Sibley, D. F., Gregg, J. M., 1987. Classification of Dolomite Rock Textures. Journal of Sedimentary Research, 57(6): 967–975. https://doi.org/10.1306/212f8cba-2b24-11d7-8648000102c1865d

    Google Scholar 

  • Sun, H. W., Li, Y. Q., Li, Z. L., et al., 2016. Estimating the Parental Magma Composition and Temperature of the **aohaizi Cumulate-Bearing Ultramafic Rock: Implication for Magma Evolution of the Tarim Large Igneous Province, Northwestern China. Journal of Earth Science, 27(3): 519–528. https://doi.org/10.1007/s12583-016-0676-4

    Article  Google Scholar 

  • Tang, L. J., 1997. Major Evolutionary Stages of Tarim Basin in Phanerozoic Time. Earth Science Frontier, 4(3/4): 318–324 (in Chinese with English Abstract)

    Google Scholar 

  • Tucker, M. E., Wright, V. P., 2009. Carbonate Sedimentology. Blackwell, Oxford. 386–396

    Google Scholar 

  • Van Lith, Y., Warthmann, R., Vasconcelos, C., et al., 2003. Microbial Fossilization in Carbonate Sediments: A Result of the Bacterial Surface Involvement in Dolomite Precipitation. Sedimentology, 50(2): 237–245. https://doi.org/10.1046/j.1365-3091.2003.00550.x

    Article  Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1/2/3): 59–88

    Google Scholar 

  • Whitaker, F. F., **ao, Y. T., 2010. Reactive Transport Modeling of Early Burial Dolomitization of Carbonate Platforms by Geothermal Convection. AAPG Bulletin, 94(6): 889–917. https://doi.org/10.1306/12090909075

    Article  Google Scholar 

  • White, D. E., 1957. Thermal Waters of Volcanic Origin. Geological Society of America Bulletin, 68(12): 1637–1658. https://doi.org/10.1130/0016-7606(1957)68[1637:twovo]2.0.co;2

    Article  Google Scholar 

  • Worden, R. H., Smalley, P. C., Oxtoby, N. H., 1996. The Effects of Thermochemical Sulfate Reduction Upon Formation Water Salinity and Oxygen Isotopes in Carbonate Gas Reservoirs. Geochimica et Cosmochimica Acta, 60(20): 3925–3931. https://doi.org/10.1016/0016-7037(96)00216-5

    Article  Google Scholar 

  • Wu, S. Q., Zhu, J. Q., Wang, G. X., et al., 2008. Types and Origin of Cambrian-Ordovician Dolomites in Tarim Basin. Acta Petrologica Sinica, 24(6): 1390–1400 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, K., Yu, B. S., Gong, H. N., et al., 2015. Carbonate Reservoirs Modified by Magmatic Intrusions in the Bachu Area, Tarim Basin, NW China. Geoscience Frontiers, 6(5): 779–790. https://doi.org/10.1016/j.gsf.2015.02.002

    Article  Google Scholar 

  • Yang, X. F., Tang, H., Wang, X. Z., et al., 2017. Dolomitization by Penesaline Sea Water in Early Cambrian Longwangmiao Formation, Central Sichuan Basin, China. Journal of Earth Science, 28(2): 305–314. https://doi.org/10.1007/s12583-017-0761-5

    Article  Google Scholar 

  • Yu, X., Yang, S. F., Chen, H. L., et al., 2011. Permian Flood Basalts from the Tarim Basin, Northwest China: SHRIMP Zircon U-Pb Dating and Geochemical Characteristics. Gondwana Research, 20(2/3): 485–497. https://doi.org/10.1016/j.gr.2010.11.009

    Article  Google Scholar 

  • Zhang, C. L., Xu, Y. G., Li, Z. X., et al., 2010. Diverse Permian Magmatism in the Tarim Block, NW China: Genetically Linked to the Permian Tarim Mantle Plume?. Lithos, 119(3/4): 537–552. https://doi.org/10.1016/j.lithos.2010.08.007

    Article  Google Scholar 

  • Zhao, R., Wu, Y. S., Jiang, H. X., et al., 2017. Oxygen Isotope Clue to Migration of Dolomitizing Fluid as Exampled by the Changxing Formation Dolomite at Panlongdong, Northeastern Sichuan. Journal of Earth Science, 28(2): 333–346. https://doi.org/10.1007/s12583-017-0724-x

    Article  Google Scholar 

  • Zhao, Z. J., Zhao, Y. B., Pan, M., et al., 2010. Cambrian Sequence Stratigraphic Framework in Tarim Basin. Geological Review, 56(5): 609–620 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, D. Y., Meng, Q. Q., **, Z. J., et al., 2015. Formation Mechanism of Deep Cambrian Dolomite Reservoirs in the Tarim Basin, Northwestern China. Marine and Petroleum Geology, 59: 232–244

    Article  Google Scholar 

  • Zhu, W., Zhang, Z., Shu, L., et al., 2007. Uplift and Exhumation History of the Precambrian Basement, Northern Tarim: Evidence from Apatite Fission Track Data. Acta Petrologica Sinica, 23(7):1671–1682 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation Project of China (Nos. 41372126 and 41772103), National Science and Technology Major Project of China (No. 2016ZX05007-002) and Natural Science Foundation Innovation Group Program of Hubei Province (No. 2015CFA024).The authors thank Dr. Qingjie Deng and Dr. Rong Li for their constructive suggestions during the preparation of the manuscript. We greatly appreciate the valuable comments and suggestions of the Editors and reviewers of the Journal of Earth Science, which helped us, improve the quality of this paper. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0954-y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngia, N.R., Hu, M., Gao, D. et al. Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China. J. Earth Sci. 30, 176–193 (2019). https://doi.org/10.1007/s12583-017-0954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0954-y

Key words

Navigation