Log in

Numerical study of bifurcating flow through sudden expansions: effect of divergence and geometric asymmetry

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

A numerical study of laminar flow through symmetric and slightly asymmetric sudden expansion, of expansion ratio 1:3, in channels with increasing cross section, is carried out using two different approaches: Conventional CFD and Lattice Boltzmann Method. The effect of divergence of walls of the channel, after a sudden expansion, on the symmetry of flow and recirculation is studied for various Reynolds numbers. It is seen that the angles of the walls play an active role in disrupting the symmetry of flow. For non-parallel walls, the symmetry breaking bifurcation phenomenon no longer exists and the loss of symmetry is a gradual process. The effect of asymmetry of geometry on flow is also studied by considering two types of asymmetry: First type is at the plane of expansion where the steps on either side are of unequal heights, while the second one deals the walls of the channel are at a different inclination with the direction of inflow. The present study reveals that small asymmetry impedes the sharp transition and thus ‘smoothens’ the pitchfork bifurcation. Increased asymmetry finally leads to the unique solution of the governing Equations, indicating complete loss of bifurcation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Durst, F., Melling, A., Whitelaw, J.: Low Reynolds number flow over a plane symmetric sudden expansion. J. Fluid Mech. 64, 111–128 (1974)

    Article  Google Scholar 

  2. Borgas, M., Pedley, T.: Non-uniqueness and bifurcation in annular and planar channel flows. J. Fluid Mech. 214, 229–250 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cherdron, W., Durst, F., Whitelaw, J.H.: Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J. Fluid Mech. 84, 13–31 (1978)

    Article  Google Scholar 

  4. Agrawal, A., Djenidi, L., Antonia, R.: Simulation of gas flow in microchannels with a sudden expansion or contraction. J. Fluid Mech. 530, 135–144 (2005)

    Article  MATH  Google Scholar 

  5. Durst, F., Pereira, J., Tropea, C.: The plane symmetric sudden-expansion flow at low Reynolds numbers. J. Fluid Mech. 248, 567–581 (1993)

    Article  Google Scholar 

  6. Fearn, R., Mullin, T., Cliffe, K.: Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595–608 (1990)

    Article  Google Scholar 

  7. Tutty, O., Pedley, T.: Oscillatory flow in a stepped channel. J. Fluid Mech. 247, 179–204 (1993)

    Article  Google Scholar 

  8. Hawa, T., Rusak, Z.: The dynamics of a laminar flow in a symmetric channel with a sudden expansion. J. Fluid Mech. 436, 283–320 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mizushima, J., Shiotani, Y.: Structural instability of the bifurcation diagram for two-dimensional flow in a channel with a sudden expansion. J. Fluid Mech. 420, 131–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mizushima, J., Shiotani, Y.: Transition and instabilities of flow in a symmetric channel with a suddenly expanded and contracted part. J. Fluid Mech. 434, 355–369 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, X., Luo, L.-S., Dembo, M.: Some progress in the lattice Boltzmann method, Reynolds number enhancement in simulations. Phys. A Stat. Mech. Appl. 239, 276–285 (1997)

    Article  Google Scholar 

  12. Luo, L.-S.: Symmetry breaking of flow in 2D symmetric channels: simulations by lattice-Boltzmann method. Int. J. Mod. Phys. C 8, 859–867 (1997)

    Article  Google Scholar 

  13. Zarghami, A., Maghrebi, M.J., Ubertini, S., Succi, S.: Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann Method. Int. J. Mod. Phys. C 22, 977–1003 (2011)

    Article  MATH  Google Scholar 

  14. He, X., Luo, L.-S.: Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  15. Kowalczyk, P., Palczewski, A., Russo, G., Walenta, Z.: Numerical solution of the Boltzmann equation: comparison of different algorithm. Eur. J. Mech.-B/Fluids. 27, 62–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lellemand, P., Luo, L.-S.: Theory of lattice Boltzmann method: dispersion, isotropy, Galilean stability. Phys. Rev. E 61, 6546–8562 (2000)

    Article  MathSciNet  Google Scholar 

  17. Mendu, S.S., Das, P.K.: Fluid flow in a cavity driven by an oscillating lid—A simulation by lattice Boltzmann method. Eur. J. Mech.-B/Fluids. 39, 59–70 (2013)

    Article  MATH  Google Scholar 

  18. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  19. Revuelta, A.: On the two-dimensional flow in a sudden expansion with large expansion ratios. Phys. Fluids 17, 028102 (2005)

    Article  MATH  Google Scholar 

  20. Durst, F., Melling, A., Whitelaw, J.: Low Reynolds number flow over a plane symmetric sudden expansion. J. Fluid Mech. 64, 111–128 (1974)

    Article  Google Scholar 

  21. Sukop, M.C., Thorne Jr., D.T.: Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, Berlin (2007)

    Google Scholar 

  22. Christopher, J.G., Henry, G.W., Luca, G., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a collocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids. 63, 1–21 (2010)

    MATH  Google Scholar 

  23. ANSYS Inc.: “ANSYS ICEM CFD 15 User Manual,” Canonsburg, November 2013

  24. Battaglia, F., Tavener, S.J., Kulkarni, A.K., Merkle, C.L.: Bifurcation of low Reynolds number flows in symmetric channels. AIAA J. 35, 99–105 (1997)

    Article  MATH  Google Scholar 

  25. Succi, S.: The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  26. Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14, 2007 (2002)

    Article  MATH  Google Scholar 

  27. Bhaumik, S., Lakshmisha, K.: Lattice Boltzmann simulation of lid-driven swirling flow in confined cylindrical cavity. Comput. Fluids 36, 1163–1173 (2007)

    Article  MATH  Google Scholar 

  28. Mishra, S.K., De, A.: Coupling of reaction and hydrodynamics around a reacting block modeled by Lattice Boltzmann Method (LBM). Comput. Fluids 71, 91–97 (2013)

    Article  MathSciNet  Google Scholar 

  29. De, A., Mishra, S.K.: Simulation of chemical reactions induced by droplet in a phase separating media using Lattice Boltzmann–kinetic Monte-Carlo framework. Comput. Fluids 89, 133–142 (2014)

    Article  Google Scholar 

  30. Kumar, P., De, A., Das, D.: Investigation of flow field of clap & fling motion using immersed boundary coupled lattice Boltzmann method. J. Fluids Struct. 57, 247–263 (2015)

    Article  Google Scholar 

  31. Shapira, M., Degani, D., Weihs, D.: Stability and existence of multiple solutions for viscous flow in suddenly enlarged channel. Comput. Fluids 18, 239 (1990)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Simulations are carried out on the computers provided by the Indian Institute of Technology Kanpur (IITK) (www.iitk.ac.in/cc) and the manuscript preparation as well as data analysis has been carried out using the resources available at IITK. This support is gratefully acknowledged. Discussion with Dr. A. K. Saha (IIT Kanpur) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jithin, M., Mishra, A., De, A. et al. Numerical study of bifurcating flow through sudden expansions: effect of divergence and geometric asymmetry. Int J Adv Eng Sci Appl Math 8, 259–273 (2016). https://doi.org/10.1007/s12572-016-0175-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-016-0175-0

Keywords

Navigation