Log in

The boundary between the Inthanon Zone (Palaeotropics) and the Gondwana-derived Sibumasu Terrane, northwest Thailand—evidence from Permo-Triassic limestones and cherts

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The boundary between tropical Permian faunas of the Inthanon Zone and Gondwana faunas in far NW Thailand has been long debated. Both the Late Devonian and the Permian Gondwanan platform margins lie a few kilometres west of the Mae Yuam/Mae Sariang Fault (MYMS FZ). In the Permian, the margin grades eastwards into hemipelagic radiolarites along the MYMS FZ and westwards into the Thitsiphin carbonate platform of Myanmar. The area west of the MYMS FZ is the Northern part of the West Thailand Region (NWTR). Quartz-rich limestones of Roadian age in the NWTR are succeeded by deep-water platform limestones in the NWTR and shallow-water carbonates in Myanmar and contain a distinctive fusulinid fauna including Monodiexodina which does not occur in palaeotropical terranes. A 300-m section of limestone 10 km west of the MYMS FZ contains Wordian microfauna and is placed in a deep shelf to slope environment. Carboniferous to Triassic continental margin, hemipelagic, non-hydrothermal, radiolarian cherts outcrop on either side of the Mae Yuam valley and were deposited on the upwelling margins of an ocean separating the Inthanon Zone and Sibumasu Terrane. The widely accepted allochthon model proposes that the Inthanon Zone Devonian-Triassic radiolarites were pelagic and deposited on a subducting ocean that supported seamounts with Visean to Permian tropical shallow-water carbonates lasting at least 90 my. We suggest an alternative hypothesis where the radiolarites of the Inthanon Zone were continental margin as shown by their geochemistry and deposited in deeper parts of small extensional basins with limited volcanism between long-lived, isolated carbonate platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adachi, M., Yamamoto, K., & Sugisaki, R. (1986). Hydrothermal chert and associated chert from the Northern Pacific, their geological significance as indicators of ocean ridge activity. Sedimentary Geology, 47, 125–148.

    Article  Google Scholar 

  • Angiolini, L., Crippa, G., Muttoni, G., & Pignatti, J. (2013). Guadalupian (Middle Permian) paleobiogeography of the Neotethys Ocean. Gondwana Research, 24, 173–184.

    Article  Google Scholar 

  • Armstrong, H. A., Owen, A. M., & Floyd, J. D. (1999). Rare earth geochemistry of Arenig Cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, Southern Scotland: implications for origin and significance to the Caledonian Orogeny. Journal of the Geological Society of London, 156, 549–560.

    Article  Google Scholar 

  • Baird, A., Dawson, O., & Vachard, D. (1993). New data on biostratigraphy of the Permian Ratburi Limestone from north peninsular Thailand. In T. Thanasuthipitak (Ed.), International Symposium on the Biostratigraphy of Mainland Southeast Asia (pp. 243–260). Facies and Paleontology.

    Google Scholar 

  • Barber, A. J., Ridd, M., & Crow, M. J. (2011). The origin, movement and assembly of pre-Tertiary tectonic units of Thailand. In M. F. Ridd, A. J. Barber, & M. J. Crow (Eds.), The Geology of Thailand (pp. 507–538). Geological Society.

    Chapter  Google Scholar 

  • Barr, S. M., & Charusuri, P. (2011). Volcanic rocks. In M. F. Ridd, A. J. Barber, & M. J. Crow (Eds.), The Geology of Thailand (pp. 415–439). Geological Society.

    Chapter  Google Scholar 

  • Barr, S. M., & MacDonald, A. S. (1991). Toward a Late Paleozoic-Early Mesozoic tectonic model for Thailand. Journal of Thai Geosciences, 1, 11–22.

    Google Scholar 

  • Barr, S. M., Tantisukrit, C., Yaowanoiyothin, W., & Macdonald, A. S. (1990). Petrology and Tectonic implications of upper Paleozoic volcanic rocks of Chiang Mai Belt, northern Thailand. Journal of Southeast Asian Earth Sciences, 4, 37–47.

    Article  Google Scholar 

  • Bateson, W. (1886). The ancestry of the Chordata. Quarterly Journal of Microscopical Science, 26, 218–571.

    Google Scholar 

  • Baum, F., von Braun, E., Hess, A., Koch, K. E., Kruse, G., Quarch, H., & Siebenhüner, M. (1970). On the Geology of northern Thailand. Beihefte zum Geologischen Jahrbuch, 102, 1–23.

    Google Scholar 

  • Baum, F., von Braun, E., Hess, A., & Koch, K. E. (1982). Geological Map of Northern Thailand, Chiang Mai Sheet,1:250,000. Bundesandstalt fur Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Bender, H., & Stoppel, D. (1965). Perm-Conodonten. Geologisches Jahrbuch, 82, 331–364.

    Google Scholar 

  • Blieck, A., & Goujet, D. (1978). A propos de nouveau matériel de Thélodontes (Vertébrés, Agnathes) d'Iran et de Thaïlande: aperçu sur la répartition géographique et stratigraphique des Agnathes des "régions gondwaniennes" au Paléozoïque moyen. Apports récents à la géologie du Gondwana (Séance spéc. GFEG-SGN, Villeneuve d'Ascq, 1977). Annales de la Société Géologique du Nord, 98, 363–372.

    Google Scholar 

  • Blieck, A., Goujet, D., Janvier, P., & Lelievre, H. (1984). Microrestes de vertebres du Siluro-Devonien d’Algerie, de Turquie et de Thailande. Geobios, 17, 851–856.

    Article  Google Scholar 

  • Boriphatkhosal, S. (1990). Investigation report of the geology of Amphoe Khun Yuam and Ban Mae La Luang. Unpublished report of the Royal Thai Department of Mineral Resources, Geological Survey Division, 1-85. [in Thai]

  • Bostrom, K., & Peterson, M. N. A. (1969). The origin of Al-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7, 427–447.

    Article  Google Scholar 

  • Boynton, W. V. (1984). Geochemistry of Rare Earth Elements: Meteorite Studies. In P. Henderson (Ed.), Rare Earth Element Geochemistry (pp. 63–114). Elsevier. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.

    Chapter  Google Scholar 

  • Braun, E. von, Hahn, L., & Maronde, H. (1981). Geological map of Northern Thailand, Li Sheet, 1:250,000. Bundesandstalt fur Geowissenschaften und Rohstoffe.

  • Blendinger, W., Furnish, W. M., & Glenister, B. F. (1992). Permian cephalopod limestones, Oman Mountains: evidence for a Permian seaway along the northern margin of Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 93, 13–20.

    Article  Google Scholar 

  • Bungunphai, N. (2005). Tawraneewittaya rawang amphoe mae sariang (4545 II), Geology of part of Amphoe Mae Sariang (map 4545 II, 1:50,000 scale), Royal Thai Department of Mineral Resources Bangkok, Report 19/2548, 1–127. ISBN 974-226-302-7. [in Thai]

  • Bunopas, S. (1982). Palaeogeographic History of Western Thailand and Adjacent parts of South-East Asia. Geological Survey Division, Department of Mineral Resources, Bangkok, Thailand Paper, 5, 1–801.

    Google Scholar 

  • Bunopas, S., & Vella, P. (1983). Tectonic and geologic evolution of Thailand. In P. Nutalaya (Ed.), Proceedings of the Workshop on the stratigraphic correlation of Thailand and Malaysia, Tech. Paper 1, 307–323.

  • Burrett, C., Carey, S., & Wongwanich, T. (1986). A Siluro-Devonian carbonate sequence in Northern Thailand. Journal of Southeast Asian Earth Sciences, 1, 215–220.

    Article  Google Scholar 

  • Burrett, C., Long, J., & Stait, B. (1990). Early-Middle Palaeozoic biogeography of Asian terranes derived from Gondwana. In W. S. McKerrow & C. R. Scotese (Eds.), Palaeozoic Palaeogeography and Biogeography (12th ed., pp. 163–174). Geological Society Memoir.

    Google Scholar 

  • Burrett, C., Zaw, K., Meffre, S., Lai, C. K., Khositanont, S., Chaodumrong, P., Udchachon, M., Ekins, S., & Halpin, J. (2014). The configuration of Greater Gondwana-evidence from LA ICPMS, U-Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26, 31–51.

  • Burrett, C., Udchachon, M., Thassanapak, H., & Chitnarin, A. (2015). Conodonts, Radiolarians and Ostracodes in the Permian E-Lert Formation, Loei Foldbelt, Indochina Terrane, Thailand. Geological Magazine, 152, 106–145.

  • Burrett, C., Udchachon, M., & Thassanapak, H. (2017). Palaeozoic correlations and the Palaeogeography of the Sibumasu (Shan-Thai) Terrane - a brief review. Research and Knowledge, 2(2), 1–17. https://doi.org/10.14456/randk.2016.12.

    Article  Google Scholar 

  • Cai, F., Ding, L., Yao, W., Laskowski, A., Xu, Q., Zhang, J., & Sein, K. (2017). Provenance and tectonic evolution of Lower Paleozoic-Upper Mesozoic strata from Sibumasu terrane, Myanmar. Gondwana Research, 41, 325–336.

    Article  Google Scholar 

  • Caridroit, M., Bohlke, D., Lumjuan, A., Helmcke, D., & De Wever, P. (1993). A mixed radiolarian fauna (Permian/Triassic) from clastics of the Mae Sariang area, northwestern Thailand. In T. Thanusuthipitak (Ed.), International Symposium on the Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology. 402–413.

  • Caridroit, M., Vachard, D., & Fontaine, H. (1992). Radiolarian age datings (Carboniferous, Permian and Triassic) in NW Thailand. Evidence of nappes and olistostromes. Comptes Rendus - Academie des Sciences, Serie II, 315, 515–520.

    Google Scholar 

  • Casier, J.-G. (2004). The mode of life of Devonian entomozoacean ostracods and the Myodocopid Mega-Assemblage proxy for hypoxic events. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 74(suppl), 73–80.

    Google Scholar 

  • Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier B.V, 387 p.

  • Charoenprawat, A., Dhamdusdi, V., Sripongpan, P., & Paksamut, N. (1985). Geology of Sheet Mae Hong Son (4547 1) and Huai Pong (4547 2) scale 1;50,000, unpublished Report Royal Thai Geological Survey Division, Department of Mineral Resources Bangkok, 1–24. (in Thai).

  • Chen, D., Qing, H., Yan, X., & Li, H. (2006). Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sedimentary Geology, 183, 203–216.

    Article  Google Scholar 

  • Chernykh, V. V., & Reshetkova, N. P. (1987). Biostratigraphy and conodonts of the boundary beds of the Carboniferous and Permian in the western slopes of southern and Central Urals. In B. I. Chuvashov (Ed.), Biostratigrafiya i litholigiya verkhnego paleozoya Urala. Sbornik Nauchnykh Trudov, PISO Ural AN SSSR, p. 45. [in Russian]

  • Chonglakmani, C. (2011). Triassic. In M. F. Ridd, A. J. Barber, & M. J. Crow (Eds.), The Geology of Thailand (pp. 137–150). Geological Society.

    Chapter  Google Scholar 

  • Cobbing, E. (2011). Granitic Rocks. In M. F. Ridd, A. J. Barber, & M. J. Crow (Eds.), The Geology of Thailand (pp. 441–457). Geological Society.

    Chapter  Google Scholar 

  • Department of Mineral Resources (1999). Geological Map of Thailand 1:1,000,000. Department of Mineral Resources, Ministry of Natural Resources and Environment

  • Department of Mineral Resources (2014). Geology of Thailand. Department of Mineral Resources, Ministry of Natural Resources and Environment, 508pp.

  • Derycke, C., Spalletta, C., Perri, M., & Corradino, C. (2008). Famennian chondrichthyan microremains from Morocco and Sardinia. Journal of Paleontology, 82, 984–995.

    Article  Google Scholar 

  • Dew, R. E., Collins, A. S., Glorie, S., Morley, C. K., Blades, M., Nachtergaele, S., & King, R. (2018). Probing into Thailand's basement: new insights from U-Pb geochronology, Sr, Sm-Nd, Pb and Lu-Hf isotopic systems from granitoids. Lithos, 320, 332–354. https://doi.org/10.1016/j.lithos.2018.09.019.

    Article  Google Scholar 

  • Dew, R. E., Collins, A. S., Morley, C. K., King, R. C., Evans, N. J., & Glorie, S. (2021). Coupled detrital zircon U-Pb and Hf analysis of the Sibumasu Terrane: from Gondwana to northwest Thailand. Journal of Asian Earth Sciences, 211, 1–20. 104709. https://doi.org/10.1016/j.jseaes.2021.104709. accessed 12/12/2020

  • Dill, H., Luppold, F., Techmer, A., Chaodumrong, P., & Phoonphun, S. (2004). Lithology, micropaleontology and chemical composition of calcareous rocks of Paleozoic through Cenozoic age (Surat Thani Province, central Peninsular Thailand): implications concerning the environment of deposition and the economic potential of limestones. Journal of Asian Earth Sciences, 23, 63–89.

    Article  Google Scholar 

  • Dopieralska, J. (2003). Neodymium isotopic composition of conodonts as a palaeoceanographic proxy in the Variscan ocean. Ph.D.Thesis, Justus-Liebig-University, Giessen, pp. 111. http://geb.unigiessen.de/geb/volltexte/2003/1168/

  • Dopieralska, J. (2009). Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: evidence from Nd isotope composition of conodonts. Geochemistry, Geophysics, Geosystems, 10, Q03015.

    Article  Google Scholar 

  • Dopieralska, J., Belka, Z., & Haack, U. (2006). Geochemical decoupling of water masses in the Variscan oceanic system during Late Devonian times. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 108–119.

    Article  Google Scholar 

  • Dopieralska, J., Belka, Z., Königshof, P., Racki, G., Savage, N., Lutat, P., & Sardsud, A. (2012). Nd isotopic composition of Late Devonian seawater in western Thailand: geotectonic implications for the origin of the Sibumasu terrane. Gondwana Research, 22, 1102–1109.

    Article  Google Scholar 

  • Douville, E., Bienvenu, P., Charlou, J. L., Donval, J. P., Fouquet, Y., Appriou, P., & Gamo, T. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63, 627–643.

    Article  Google Scholar 

  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W.E. Ham (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir, 1, 108–121.

  • Dzik, J. (1976). Remarks on the evolution of Ordovician conodonts. Acta Palaeontologica Polonica, 36, 265–323.

    Google Scholar 

  • Eichenberg, W. (1930). Conodonten aus dem Culm des Harzes. Palaontologisches Zeitschrift, 12, 177–182.

    Article  Google Scholar 

  • Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19, 730–781.

    Google Scholar 

  • Feng, Q., Chonglakmani, C., Helmcke, D., & Ingavat-Helmcke, R. (2004a). Long-lived Paleotethyan pelagic remnant inside Shan-Thai Block: evidence from radiolarian biostratigraphy. Science in China (Series D), 47, 1113–1119.

    Google Scholar 

  • Feng, Q., Helmcke, D., Chonglakmani, C., Ingavat-Helmcke, R., & Liu, B. (2004b). Early Carboniferous Radiolarians from north-west Thailand: Palaeogeographical Implications. Palaeontology, 47, 377–393.

    Article  Google Scholar 

  • Feng, Q., Malila, K., Wonganan, N., Chonglakmani, C., Helmcke, D., Ingavat-Helmcke, R., & Caridroit, M. (2005). Permian and Triassic Radiolaria from Northwest Thailand: paleogeographical implications. Revue de Micropaleontologie, 48, 237–255.

    Article  Google Scholar 

  • Feng, Q., Yang, W., Shen, S., Chonglakmani, C., & Kitsana, M. (2008). The Permian seamount stratigraphic sequence in Chiang Mai, North Thailand and its tectogeographic significance. Science in China Series D Earth Sciences, 51, 1768–1775.

    Article  Google Scholar 

  • Ferrari, O. M., Hochard, C., & Stampfli, G. M. (2008). An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451, 346–365.

    Article  Google Scholar 

  • Flügel, E. (2004). Microfacies of carbonate rocks. Springer.

    Book  Google Scholar 

  • Fontaine, H., & Suteethorn, V. (1988). Late Paleozoic and Mesozoic fossils of west Thailand and their environments. Coordinating Committee for Geoscience Programmes in East and Southeast Asia, CCOP Technical Bulletin, 20, 1–107.

  • Fontaine, H., Suteethorn, V., & Vachard, D. (1993). Carboniferous and Permian limestones in Sop Pong area: unexpected lithology and fossils. In T. Thanasuthipitak (Ed.), International Symposium on the Biostratigraphy of Mainland Southeast Asia (pp. 319–336). Facies and Paleontology.

  • Fontaine, H., Hoang Thi Than, Juanngam, S., Kavinate, S., Salypongse, S., Suteethorn, V., & Vachard, D. (2009). Paleontology and stratigraphy of the northwest Thailand: paleogeographical implications. Department of Mineral Resources, 208pp.

  • Fontaine, H., Kavinate, S., Hoang, T. T., & Vachard, D. (2012). Permian limestone of peninsular Thailand in Khao Yoi, Cha-am and Thong Pha Phum. Natural History Bulletin of the Siam Society, 58, 39–47.

    Google Scholar 

  • Fujikawa, M., & Ishibashi, T. (1999). Carboniferous and Permian ammonoids from northern Thailand. Memoir of the Faculty of Science Kyushu University, Series D. Earth and Planetary Sciences, 30, 91–110.

    Google Scholar 

  • Gardiner, N. J., Roberts, N. M., Morley, C. K., Searle, M. P., & Whitehouse, M. (2016a). Did Oligocene crustal thickening precede basin development in northern Thailand? A geochronological reassessment of Doi Inthanon and Doi Suthep. Lithos, 240-243, 69–83.

    Article  Google Scholar 

  • Gardiner, N. J., Searle, M. P., Morley, C. K., Whitehouse, M. P., Spencer, C. J., & Robb, L. J. (2016b). The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: new insights from zircon U-Pb and Hf isotope data. Gondwana Research, 39, 401–422.

    Article  Google Scholar 

  • German, C. R., Klinkhammer, G. P., Edmond, J. M., Mitra, A., & Elderfield, H. (1990). Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 345, 516–518.

    Article  Google Scholar 

  • German, C. R., Hergt, J., & Palmer, M. R. (1999). Geochemistry of a Hydrothermal Sediment Core from the OBS Ventfield, 218N East Pacific Rise. Chemical Geology, 155, 65–75.

    Article  Google Scholar 

  • Ginter, M. (2000). Late Famennian pelagic shark assemblages. Acta Geologica Polonica, 50, 369–386.

    Google Scholar 

  • Ginter, M., Hairapetian, V., & Klug, C. (2002). Famennian chondrichthyans from the shelves of north Gondwana. Acta Geologica Polonica, 52, 169–215.

    Google Scholar 

  • Girard, C., Cornee, J.-J., Joachimski, M., Charruault, A.-L., Dufour, A.-B., & Reneau, S. (2020). Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian. Palaeogeography, Palaeoecology, Palaeoclimatology, 549, 108852. https://doi.org/10.1016/j.palaeo.2018.06.046.

    Article  Google Scholar 

  • Gradinaru, M., Lazar, I., Ducea, M. N., & Petrescu, L. (2019). Microaerophilic Fe-oxidizing micro-organisms in Middle Jurassic ferruginous stromatolites and the paleoenvironmental context of their formation (Southern Carpathians, Romania). Geobiology. https://doi.org/10.1111/gbi.12376.

  • Gromet, L. P., Dymek, R. F., Haskin, L. A., & Korotev, R. L. (1984). The “North American Shale Composite”, its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469–2482.

    Article  Google Scholar 

  • Hahn, L., & Siebenhüner, M. (1982). Explanatory notes on the geological maps of northern and western Thailand 1:250,000. Institut fur Geowissenschaften und Rohstoffe, 3–76.

  • Halamić, J., Marchig, V., & Goričan, S. (2001). Geochemistry of Triassic radiolarian cherts in north-western Croatia. Geologica Carpathica, 52(6), 327–342.

    Google Scholar 

  • Hara, H., Wakita, K., Ueno, K., Kamata, Y., Hisada, K., Charusiri, P., Charoentitirat, T., & Chaodumrong, P. (2009). Nature of accretion related to Paleo-Tethys subduction recorded in northern Thailand: constraints from mélange kinematics and illite crystallinity. Gondwana Research, 16, 310–320.

  • Hara, H., Kurihara, T., Kuroda, J., Adachi, Y., Kurita, H., Wakita, K., Hisada, K., Charusiri, P., Charoentitirat, T., & Chaodumrong, P. (2010). Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: implications for the opening of the Paleo-Tethys. Palaeogeography, Palaeoclimatology Palaeoecology, 297, 452–464.

  • Hara, H., Kunii, M., Hisada, K., Ueno, K., Kamata, Y., Srichan, W., Charusiri, P., Charoentitirat, T., Watarai, M., Adachi, Y., & Kurihara, T. (2012). Petrography and geochemistry of clastic rocks within the Inthanon zone, northern Thailand: Implications for Paleo-Tethys subduction and convergence. Journal of Asian Earth Sciences, 61, 2–15.

    Article  Google Scholar 

  • Hara, H., Tokiwa, T., Kurihara, T., Charoentitirat, T., & Sardsud, A. (2021). Advance online publication. Revisiting the tectonic evolution of the Triassic Palaeo-Tethys convergence zone in northern Thailand inferred from detrital zircon U-Pb ages. Geological Magazine. https://doi.org/10.1017/S0016756820001028.

  • Henderson, C. (2016). Permian conodont biostratigraphy. In S. Lucas, & S. Z. Shen (Eds.), The Permian Timescale. Geological Society, Special Publications, 450, 119–142. https://doi.org/10.1144/SP450.9

  • Hess, A., & Koch, K. E. (1979). Geological Map of Northern Thailand, Chiang Dao Sheet, 1:250,000, Bundesandstalt fur Geowissenschaften und Rohstoffe.

  • Hisada, K., Sugiyama, M., Ueno, K., & Charusiri, P. (2004). Missing ophiolitic rocks along the Mae Yuam Fault as the Gondwana-Tethys divide in north-west Thailand. Island Arc, 13, 119–127.

    Article  Google Scholar 

  • Huppert, K. L., Perron, J. T., & Royden, L. H. (2020). Hotspot swells and the lifespan of volcanic ocean islands. Science Advances, 6, 1–8 eaaw6906.

    Article  Google Scholar 

  • Hutchison, C. S. (1975). Ophiolites in Southeast Asia. Geological Society of America Bulletin, 86, 797–806.

    Article  Google Scholar 

  • Ingavat, R., & Douglass, R. C. (1981). Fusuline Fossils from Northwest Thailand Part XIV.: the Fusulinid Genus Monodiexodina from Northwest Thailand. In T. Kobayashi, R. Toriyama, & W. Hashimoto (Eds.), Geology and Palaeontology of Southeast Asia (Vol. 22, pp. 23–34). The University of Tokyo Press.

  • Ingavat-Helmcke, R. (1994). Paleozoic paleontological evidence of Thailand. In P. Anguswathana, T. Wongwanich, & W. Tansathein (Eds.), Proceedings of the International Symposium on Stratigraphic Correlations of Southeast Asia (pp. 43–54). Department of Mineral Resources.

    Google Scholar 

  • Ishida, K., Nanba, A., Hirsch, F., Kozai, T., & Meesook, A. (2006). New micropalaeontological evidence for a Late Triassic Shan-Thai orogeny. Geosciences Journal, 10, 181–194.

    Article  Google Scholar 

  • Jasin, B. (1991). Significance of Monodiexodina (Fusulininacea) in geology of Peninsular Malaysia. Geological Society of Malaysia Bulletin, 29, 171–181.

    Article  Google Scholar 

  • **dasut, S., Tantiwanich, W., Kistudasima, S., & Waser, M. (1990). Geology of the Ban Kong Soom Area. Royal Thai Department of Mineral Resources Bangkok, Geological Survey Report 0146, 1–24.

  • Kamata, Y., Sashida, K., Ueno, K., Hisada, K., Nikonsri, N., & Charusiri, P. (2002). Triassic radiolarian faunas from the Mae Sariang area Northern Thailand, and their paleogeographic significance. Journal of Asian Earth Sciences, 20, 491–506.

    Article  Google Scholar 

  • Kamata, Y., Ueno, K., Hara, H., Ichise, M., Charoentitirat, T., Charusiri, P., Sardsud, A., & Hisada, K. (2009). Classification of the Sibumasu and Paleo-Tethys Tectonic Division in Thailand using Chert Lithofacies. Island Arc, 18, 21–31.

    Article  Google Scholar 

  • Kamenetsky, V., Crawford, A. J., & Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and Melt inclusions in Primitive Rocks. Journal of Petrology, 42, 655–671.

    Article  Google Scholar 

  • Kato, Y., Nakao, K., & Isozaki, Y. (2002). Geochemistry of Late Permian to Early Triassic Pelagic cherts from southwest Japan: implication for an oceanic redox change. Chemical Geology, 182, 15–34.

    Article  Google Scholar 

  • Khin, Z., Meffre, S., Lai, C. K., Burrett, C., Santosh, M., Graham, I., Manaka, T., Salam, A., Kamvong, T., & Cromie, P. (2014). Tectonics and metallogeny of mainland Southeast Asia - a review and contribution. Gondwana Research, 26, 5–30.

    Article  Google Scholar 

  • Königshof, P. (2003). Conodont deformation patterns and textural alteration in Paleozoic conodonts: examples from Germany and France. Senckenbergiana lethaea, 83, 149–156.

    Article  Google Scholar 

  • Königshof, P., Savage, N., Lutat, P., Sardsud, A., Dopieralska, J., Belka, Z., & Racki, G. (2012). Late Devonian sedimentary record of the Paleotethys Ocean - the Mae Sariang section, northwestern Thailand. Journal of Asian Earth Sciences, 52, 146–157.

    Article  Google Scholar 

  • Kosuwan, S., Takashima, I., & Charusiri, P. (2019). Active fault zones in Thailand. Website Department of Mineral Resources www.dmr.go.th/.

    Google Scholar 

  • Kotlyar, G., Shen, S. Z., Kossvaya, O., & Zhuravlev, A. (2007). Middle Permian (Guadalupian) biostratigraphy in South Primorye, Russian Far East and correlation with Northeast China. Palaeoworld, 16, 173–189.

    Article  Google Scholar 

  • Kozur, H. (1975). Beitrage zur Conodontenfauna des Perm. Geologisch -Palaontologische Mitteilungen, 5, 1–44.

    Google Scholar 

  • Kozur, H. (1989). The taxonomy of the gondolellid conodonts in the Permian and Triassic. Courier Forschunginstitut Senckenberg, 117, 409–469.

    Google Scholar 

  • Kozur, H., & Mostler, H. (1994). Anisian to middle Carnian radiolarian zonation and description of some stratigraphically important radiolarians. Geologisch-Paläontologische Mitteilungen Innsbruck, Sonderband, 3, 39–255.

    Google Scholar 

  • Kozur, H., & Wardlaw, B. (2010). The Guadalupian conodont fauna of Rustaq and Wadi Wasit, Oman and a West Texas connection. Micropaleontology, 56, 213–231.

    Article  Google Scholar 

  • Kozur, H., Krainer, K., & Mostler, H. (1996). Radiolarians and facies of the Middle Triassic Loibl Formation, South Alpine Karawanken Mountains (Carinthia Austria). Geologisch-Paläontologische Mitteilungen Innsbruck, Sonderband, 4, 195–278.

  • Lazar, I., Gradinaru, M., & Petrescu, L. (2013). Ferruginous microstromatolites related to Middle Jurassic condensed sequences and hardgrounds (Bucegi Mountains, Southern Carpathians, Romania). Facies, 59, 359–390.

    Article  Google Scholar 

  • Lelievre, H., Janvier, P., Goujet, D., & Blieck, A. (1984). Microrestes de vertébrés du Siluro-Devonien d’Algerie, de Turquie et de Thaïlande. Geobios, 17, 851–856.

    Article  Google Scholar 

  • Lin, Y. L., Yeh, M., Lee, T., Chung, S., Iizuka, Y., & Charusiri, P. (2013). First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu Terrane. Gondwana Research, 24, 1031–1037.

    Article  Google Scholar 

  • Lindström, M. (1970). A suprageneric taxonomy of the conodonts. Lethaia, 3, 427–445.

    Article  Google Scholar 

  • Long, J. A. (1990). Late Devonian chondrichthyans and other microvertebrate remains from northern Thailand. Journal of Vertebrate Paleontology, 10, 59–71.

    Article  Google Scholar 

  • Long, J. A., & Burrett, C. (1989). Fish from the Upper Devonian of the Shan-Thai terrane indicate proximity to east Gondwana and south China terranes. Geology, 17, 811–813.

    Article  Google Scholar 

  • Loydell, D., Udchachon, M., & Burrett, C. (2019). Llandovery (lower Silurian) graptolites from the Sepon Mine, Truong Son Terrane, central Laos and their palaeogeographical significance. Journal of Asian Earth Science, 170, 360–374. https://doi.org/10.1016/j.jseaes.2018.11.013.

    Article  Google Scholar 

  • Mamet, B. L. (1991). Carboniferous calcareous algae. In R. Riding (Ed.), Calcareous algae and stromatolites (pp. 370–451). Springer.

    Chapter  Google Scholar 

  • Mamet, B., & Preat, A. (2006). Iron-bacterial mediation in Phanerozoic red limestones: state of the art. Sedimentary Geology, 185, 147–157. https://doi.org/10.1016/j.sedgeo.2005.12.009.

    Article  Google Scholar 

  • Marchig, V., Gundlach, H., Möller, P., & Schley, F. (1982). Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Marine Geology, 50, 241–256.

    Article  Google Scholar 

  • Metcalfe, I. (1984). Stratigraphy, palaeontology and palaeogeography of the Carboniferous of Southeast Asia. Memoires Société Géologique France (New Series), 147, 107–118.

    Google Scholar 

  • Metcalfe, I., Henderson, C., & Wakita, K. (2017). Lower Permian conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, northern Thailand. Gondwana Research, 44, 54–66.

    Article  Google Scholar 

  • Michard, A. (1989). Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, 53, 745–750.

    Article  Google Scholar 

  • Mitchell, A. H. G. (1977). Tectonic settings for emplacement of Southeast Asian tin granites. Geological Society of Malaysia Bulletin, 9, 123–140.

    Article  Google Scholar 

  • Mitchell, A. H. G., Chung, S., Oo, T., Lin, T., & Hung, C. (2012). Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean? Journal of Asian Earth Sciences, 56, 1–23. https://doi.org/10.1016/j.jseaes.2012.04.019.

    Article  Google Scholar 

  • Morley, C. K. (2018). Understanding Sibumasu in the context of ribbon continents. Gondwana Research, 64, 184–215.

    Article  Google Scholar 

  • Murray, R. W. (1994). Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90, 213–232.

    Article  Google Scholar 

  • Murray, R. W., Buchholtz ten Brink, M. R., Jones, D. L., Gerlach, D. C., & Russ, G. P. (1990). Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18, 268–271.

    Article  Google Scholar 

  • Min, M., Lin, K. K., Fang, Q., Chonglakmani, C., & Helmcke, D. (2001). Tracing disrupted outer margin of Paleoeurasian continent through Union of Myanmar. Journal of China University of Geosciences, 12, 201–206.

    Google Scholar 

  • Nozaki, Y. (2010). Rare earth elements and their isotopes in the ocean. In K. K. Turekian (Ed.), Marine Chemistry and Geochemistry (pp. 39–51). Academic Press.

    Google Scholar 

  • Owen, A. W., Armstrong, H. A., & Floyd, J. D. (1999). Rare earth element geochemistry of Upper Ordovician cherts from the southern uplands of Scotland. Journal of Geological Society of London, 156, 191–204.

    Article  Google Scholar 

  • Panjasawatwong, Y. (1999). Petrology and tectonic setting of eruption of basaltic rocks penetrated in well GTE-1, San Kam Phaeng geothermal field, Chiang Mai, northern Thailand. In B. Ratanasthein & S. L. Rieb (Eds.), Proceedings of the International Symposium on Shallow Tethys (ST) 5, Chiang Mai, Thailand, February 1999 (pp. 242–264). Chiang Mai University.

    Google Scholar 

  • Panjasawatwong, Y., Phajuy, B., & Hada, S. (2003). Tectonic setting of the Permo-Triassic Chiang Khong volcanic rocks, northern Thailand based on petrochemical characteristics. Gondwana Research, 6, 743–755.

    Article  Google Scholar 

  • Parvizi, T., Rashidi, K., & Vachard, D. (2013). Middle Permian calcareous algae and microproblematica (Dalan Formation, Dena Mountain, High Zagros, SW Iran). Facies, 59, 149–177. https://doi.org/10.1007/s10347-012-0357-6.

    Article  Google Scholar 

  • Phajuy, B., Panjasawatwong, Y., & Osataporn, P. (2005). Preliminary geochemical study of volcanic rocks in the Pang Mayao area, Phrao, Chiang Mai, northern Thailand: tectonic setting of formation. Journal of Asian Earth Sciences, 24, 765–776.

    Article  Google Scholar 

  • Pitfield, P. (1988). Report on the geochemistry of the granites of Thailand. NERC, British Geological Survey Overseas Directorate Report, WC/88/6, 1–17.

  • Pitragool, S., & Panupaisal, S. (1979). Tin and tungsten mineralization of the Mae Lama mining district NW Thailand. Geological Society of Malaysia Bulletin, 11, 267–281.

    Article  Google Scholar 

  • Putthapiban, P. (2002). Geology and geochronology of the igneous rocks of Thailand. In N. Montajit (Ed.), Symposium on the Geology of Thailand. 261–283.

  • Racki, G., Königshof, P., Belka, Z., Dopieralska, J., & Pisarzowska, A. (2019). Diverse depositional and geochemical signatures of the Frasnian-Famennian global event in western Thailand reveal palaeotethyan vs. Western Australian geotectonic affinities. Journal of Asian Earth Sciences X, 2, 100010. https://doi.org/10.1016/j.jaesx.2019.100010.

    Article  Google Scholar 

  • Randon, C., Derycke, C., Blieck, A., Perri, M., & Spalletta, C. (2007). Late Devonian - Early Carboniferous vertebrate microremains from the Carnic Alps, Italy. Geobios, 40, 809–827.

    Article  Google Scholar 

  • Raksakulwang, L., & Bunopas, S. (1985). Stratigraphy and tectonic evolution in the Mae Hong Son Province, north western Thailand. Unpublished report of the Royal Thai Department of Mineral Resources. 1–39.

  • Raksakulwong, L., & Tantiwant, W. (1986). Investigation report on the Geology of Sheet Ban Huai Pha and Ban Mae La Na. Unpublished report of the Royal Thai Department of Mineral Resources 1–32. [in Thai]

  • Ratanasthein, B., Kotcha, K., & Nualngam, S. (2010). Ordovician fossils at Ban Don Sa-ngud, Mae Sariang district, Mae Hong Son, Thailand. In R. Somana, M. Udchachon, K. Lauprasert, P. Lutat, & H. Thassanapak (Eds.), Abstracts of the 2nd International Conference on Palaeontology of Southeast Asia (p. 11). Mahasarakham University.

    Google Scholar 

  • Rejebian, V., Harris, A., & Huebner, J. (1987). Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism and hydrothermal alteration. Geological Society of America Bulletin, 99, 471–479.

    Article  Google Scholar 

  • Ridd, M. F. (1971). Southeast Asia as part of Gondwanaland. Nature, 234, 531–533.

    Article  Google Scholar 

  • Ridd, M. F. (1980). Possible Palaeozoic drift of SE Asia and Triassic collision with China. Journal of the Geological Society, 137, 635–640.

    Article  Google Scholar 

  • Ridd, M. F. (2015a). Should Sibumasu be renamed Sibuma? The case for a discrete Gondwana-derived block embracing western Myanmar, upper Peninsular Thailand and NE Sumatra. Journal of the Geological Society, 173, 249–264.

    Article  Google Scholar 

  • Ridd, M. F. (2015b). East flank of the Sibumasu block in NW Thailand and Myanmar and its possible northward continuation into Yunnan: a review and suggested tectono-stratigraphic interpretation. Journal Asian Earth Sciences, 104, 160–174.

    Article  Google Scholar 

  • Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214. https://doi.org/10.1046/j.1365-3091.2000.00003.x.

    Article  Google Scholar 

  • Sanjit, P., Wonganan, N., & Thasod, Y. (2014). Devonian Radiolarian Faunas in Pai Area, Mae Hong Son Province, Northern Thailand: Paleogeographic Implication. Journal of Science and Technology Mahasarakham University, Thailand, 33(6), 393–402.

    Google Scholar 

  • Sarapirome, S., & Khundee, S. (1994). Preliminary study of the neotectonics of the Mae Hong Son- Khun Yuam Valley (pp. 1–13.). Bangkok: Report Geological Survey Division, Department of Mineral Resources.

  • Savage, N. (2013). Late Devonian conodonts from Northwestern Thailand (pp.1-48). Eugene, Oregon: Bourland Printing, Trinity Press.

  • Savage, N. (2019). Frasnian-Famennian transition in western Thailand: conodonts, biofacies, eustatic changes, extinction. Journal of Paleontology, 93(3), 476–495. https://doi.org/10.1017/jpa.2018.96.

    Article  Google Scholar 

  • Searle, M., & Morley, C. K. (2011). Tectonic and thermal evolution in the regional context of SE Asia. In M. F. Ridd, A. J. Barber, & M. J. Crow (Eds.), The Geology of Thailand (pp. 539–572). Geological Society.

    Chapter  Google Scholar 

  • Shi, G., & Archbold, N. (1995). Permian brachiopod faunal sequence of the Shan-Thai terrane. Journal of Southeast Asian Earth Sciences, 11, 177–187.

    Article  Google Scholar 

  • Smith, S. (1941). Some Permian corals from the Plateau Limestone of the Southern Shan States. Palaeontologica Indica, New Series, 30(2), 1–21.

    Google Scholar 

  • Sobolev, N. N., & Nakrem, H. A. (1996). Middle Carboniferous-Lower Permian Conodonts of Novaya Zemlya. Norsk Polarinstitut Skrifter, 199, 1–129.

    Google Scholar 

  • Srinak, N., Hisada, K., Kamata, Y., & Charusiri, P. (2007). Stratigraphy of the Mae Sariang Group of Northwestern Thailand: Implication for Paleoenvironments and Tectonic Setting. The Natural History Journal of Chulalongkorn University, 7(2), 87–108.

    Google Scholar 

  • Stauffer, P. H. (1974). Malaya and Southeast Asia in the pattern of continental drift. Geological Society of Malaysia Bulletin, 7, 89–138.

    Article  Google Scholar 

  • Sukto, P., Suteethorn, V., Boripatgosol, S., Meesook, A., & Sareerat, S. (1984). Geologic map of Moulmein 1:250,000. Geological Survey Division, Department of Mineral Resources Bangkok.

  • Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell.

    Google Scholar 

  • Thassanapak, H. (2008). The Triassic Radiolarian Cherts from northern Thailand: implications for Palaeoenvironment and Tectonic Setting. Unpublished Ph.D., thesis (pp. 1-280). Nakhon Ratchasima, Thailand: Suraneree University of Technology.

  • Thassanapak, H., Feng, Q., Grant-Mackie, J., Chonglakmani, C., & Thanee, N. (2011a). Middle Triassic radiolarian faunas from Chiang Dao, Northern Thailand. Palaeoworld, 20, 179–202.

    Article  Google Scholar 

  • Thassanapak, H., Udchachon, M., Chonglakmani, C., & Feng, Q. (2011b). Geochemistry of Middle Triassic Radiolarian Cherts from Northern Thailand: Implication for Depositional Environment. Journal of Earth Science, 22, 688–703.

    Article  Google Scholar 

  • Thassanapak, H., Udchachon, M., Feng, Q., & Burrett, C. (2017). Middle Triassic radiolarians from cherts/silicified shales in an extensional basin in the Sukhothai Fold Belt, Northern Thailand. Journal of Earth Science, 28(1), 29–50.

    Article  Google Scholar 

  • Thassanapak, H., Udchachon, M., & Burrett, C. (2018). Silurian radiolarians from the Sepon Mine, Truong Son Terrane, central Laos and their palaeogeographic and tectonic significance. Geological Magazine, 155, 1621–1640.

    Article  Google Scholar 

  • Thassanapak, H., Udchachon, M., Chareonmit, J., & Burrett, C. (2020). Early Permian radiolarians from Southern Thailand, the deglaciation of Gondwana and the age of the basal Ratburi Group. Palaeoworld, 29, 552–567.

    Article  Google Scholar 

  • Tofke, T., Lumjuan, A., & Helmcke, D. (1993). Triassic syn-orogenic siliciclastics from the area of Mae Sariang (northwestern Thailand). In T. Thanasuthipitak (Ed.), International Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology, pp. 391-400.

  • Turner, S. (1997). Sequence of Devonian thelodont scale assemblages in East Gondwana. Geological Society of America Special Paper, 321, 1–45.

    Google Scholar 

  • Udchachon, M., Thassanapak, H., Feng, Q., & Chonglakmani, C. (2011). Geochemical constraints on the depositional environment of Upper Devonian radiolarian cherts from Loei, North Eastern Thailand. Frontiers of Earth Science, 5, 178–190.

    Article  Google Scholar 

  • Udchachon, M., Thassanapak, H., Feng, Q., & Burrett, C. (2015). Palaeoenvironmental Implications of Geochemistry and Radiolarians from Late Devonian Chert/Shale Sequences of the Truong Son Foldbelt, Laos. Geological Journal, 52, 154–173. https://doi.org/10.1002/gj.2743.

    Article  Google Scholar 

  • Udchachon, M., Thassanapak, H., & Burrett, C. (2018). Reworked conodonts from the Lower Permian carbonate turbidites in the Inthanon Terrane, Northern Thailand and their tectonic significance. GeoBonn. p267. (Abstract)

  • Ueno, K. (1999). Gondwana/Tethys divide in East Asia: solution from Late Paleozoic foraminiferal paleobiogeography. In B. Ratanasthein and S.L. Rieb (Eds.), Proceedings of the International Symposium on Shallow Tethys (ST) 5, pp. 45-54.

  • Ueno, K. (2003). The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks: their implication for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian continent. Palaeogeography, Palaeoclimatology, Paleoecology, 193, 1-24.

  • Ueno, K. (2006). The Permian antitropical fusulinoidean genus Monodiexodina: distribution, taxonomy, paleobiogeography and paleoecology. Journal of Asian Earth Sciences, 26, 380–404.

    Article  Google Scholar 

  • Ueno, K., & Charoentitirat, T. (2011). Carboniferous and Permian. In M. F. Ridd, A. J. Barber, & M. J. Crow (Eds.), The Geology of Thailand (pp. 71–136). Geological Society.

    Chapter  Google Scholar 

  • Ueno, T., & Hisada, K. (2001). The Nan-Uttaradit-Sa Kaeo Suture as a main Paleo-Tethyan suture in Thailand; is it real? Gondwana Research, 4(4), 804–806. https://doi.org/10.1016/S1342-937X(05)70590-6.

    Article  Google Scholar 

  • Vinn, O., & Mutvei, H. (2009). Calcareous tubeworms of the Phanerozoic. Estonian Journal of Earth Sciences, 58, 286–296.

    Article  Google Scholar 

  • Wang, D., Jiang, H., Gu, S., & Yan, J. (2016). Cisuralian-Guadalupian conodont sequence from the Shaiwa section Ziyun, Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 457, 1–22.

    Article  Google Scholar 

  • Wang, Y.-J., He, H.-Y., Zhang, Y.-Z., Srithai, B., Feng, Q.-L., & Cawood, P. A. (2017). Origin of Permian OIB-like basalts with two differentiation trends in NW Thailand and implication on the Paleotethyan Ocean. Lithos, 274-275, 93–105.

    Article  Google Scholar 

  • Wardlaw, B. R., & Nestell, M. K. (2015). Conodont faunas from a complete basinal succession of the upper part of the Wordian (Middle Permian, Guadalupian, West Texas). Micropaleontology, 61, 257–292.

    Article  Google Scholar 

  • Wilson, M. A., Vinn, O., & Yancey, T. E. (2011). A new microconchid tubeworm from the Lower Permian (Artinskian) of central Texas, USA. Acta Palaeontologica Polonica, 56, 785–791. https://doi.org/10.4202/app.2010.0086.

    Article  Google Scholar 

  • Win, Z., Shwe, K.K. & Yin, O.S. (2017). Sedimentary facies and biotic associations in the Permian-Triassic limestones on the Shan Plateau, Myanmar. In A. J. Barber, Khin Zaw, M.J. Crow (Eds.), Myanmar: Geology, Resources and Tectonics. Geological Society, London, Memoirs, 48, 343-363, https://doi.org/10.1144/M48.15

  • Wiwegwin, W., Hisada, K.-I., Charusiri, P., Kosuwan, S., Pailoplee, S., Saitong, P., Kaowisat, K., & Won-In, K. (2014). Paleoearthquake investigations of the Mae Hong Son Fault, Northern Thailand. Journal of Earthquake and Tsunami, 8(2), 14500007. https://doi.org/10.1142/S1793431114500079.

    Article  Google Scholar 

  • Wonganan, N., & Caridroit, M. (2005). Middle and Upper Devonian radiolarian faunas from Chiang Dao area, Chiang Mai Province, northern Thailand. Micropaleontology, 51(1), 39–57.

    Article  Google Scholar 

  • Wonganan, N., & Caridroit, M. (2006). Middle to Upper Permian radiolarian faunas from chert blocks in Pai area, northwestern Thailand. Eclogae Geologica Helvetica, 99(supplement 1), S133–S139.

    Article  Google Scholar 

  • **ao, Y., Suzuki, N., & He, W. (2017). Water depths of the latest Permian (Changhsingian) radiolarians estimated from correspondence analysis. Earth Science Reviews, 173, 141–158.

    Article  Google Scholar 

  • Yamamoto, K. (1987). Geochemical characteristics and depositional environments of cherts in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52, 65–108.

    Article  Google Scholar 

  • Yuan, D., Zhang, Y., Shen, S., Henderson, C., Zhang, Y., Zhu, T., An, X., & Feng, H. (2016). Early Permian conodonts from the Xainza area, central Lhasa Block, Tibet, and their palaeobiogeographical and palaeoclimatic implications. Journal of Systematic Palaeontology, 14, 365–383.

    Article  Google Scholar 

  • Zhang, N., Henderson, C., **a, W., Wang, G., & Shang, H. (2010). Conodonts and radiolarians through the Cisuralian-Guadalupian boundary from the **xiang and Dachongling sections, Guangxi region, South China. Alcheringa, 34, 135–160.

    Article  Google Scholar 

  • Zhang, Y.-C., Aung, K. P., Shen, S.-Z., Zhang, H., Zaw, T., Ding, L., Cai, F.-L., & Sein, K. (2020). Middle Permian fusulines from the Thitsipin Formation of Shan State, Myanmar and their palaeobiogeographical and palaeogeographical implications. Papers in Palaeontology, 2020, 1–35. https://doi.org/10.1002/spp2.1298.

  • Zhao, J., Huang, B., Yan, Y., Bai, Q., Dong, Y., Win, Z., Aung, H. H., & Yang, X. (2020). A palaeomagnetic study of the Middle Permian and Middle Triassic limestones from Shan State, Myanmar: Implications for collision of the Sibumasu Terrane and Indochina Terrane. Geological Journal, 55, 1179–1194. https://doi.org/10.1002/gj.3482.

    Article  Google Scholar 

  • Zhao, J., Sheng, J., Yao, Z., Liang, X., Chen, C., Hui, L., & Liao, Z. (1981). The Changhsingian and Permian-Triassic boundary of South China. Bulletin Nan**g Institute of Geology and Palaeontology, 2, 1–131.

    Google Scholar 

  • Zhou, W.-M., Aung, K. P., Liu, L., Zhang, Y.-C., Zaw, T., Wang, J., & Shen, S.-Z. (2020). First record of Cisuralian-Guadalupian plant fossils from the Shan Plateau, eastern Myanmar. Palaeoworld, 29, 108–116.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Mahasarakham University. We thank the staff of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, for their help with geochemical analyses. We thank Professor Chongpan Chonglakmani and the staff of Suranaree University of Technology, Thailand, for their suggestions and technical support. We also thank colleagues from the Department of Mineral Resources, Bangkok, for their logistic support. This paper is part of our contribution to IGCP-700 Carbonate Build-ups in SE Asia. We thank Dr. Michael Ridd and an anonymous reviewer for their very useful comments that substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and checking of the paper. Thassanapak and Udchachon collected the chert, assessed the radiolarian taxonomy and with Feng carried out the chert geochemistry. Geochemical data analyses and interpretation were conducted by Thassanapak and Udchachon. Petrographic analyses were carried out by Udchachon on Devonian and Permian limestones collected by Burrett and Udchachon. Burrett assessed the taxonomy of the conodonts.

Corresponding author

Correspondence to Hathaithip Thassanapak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udchachon, M., Thassanapak, H., Burrett, C. et al. The boundary between the Inthanon Zone (Palaeotropics) and the Gondwana-derived Sibumasu Terrane, northwest Thailand—evidence from Permo-Triassic limestones and cherts. Palaeobio Palaeoenv 102, 383–418 (2022). https://doi.org/10.1007/s12549-021-00508-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-021-00508-w

Keywords

Navigation