Log in

Determination of tensile properties and residual stresses of Ni-Co thin films

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper reports tensile properties and residual stresses of Ni-Co thin films. To measure elastic (and plastic) properties, direct tensile tests using dog-bone type specimens are performed first. Assuming that residual stresses vary linearly through the film thickness, bending and membrane residual stress components are measured using cantilever beam and T-structure beam specimens, respectively. Averaged values of Young’s modulus, yield strength and tensile strength are found to be about 163GPa, 1,700MPa and 2,000MPa, respectively. The membrane and bending residual stress components are found to be about 825MPa and 47MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

t :

thickness of specimens

L :

length of specimens

δ c :

vertical end-deflection of cantilever beam specimens, Fig. 5(a)

δ t :

transverse displacement measured in the T-structure beam specimens, Fig. 8(a)

δ s :

vertical deflection measured in the T-structure beam specimens, Fig. 16(a)

b :

width of cantilever beam specimens, Fig. 5(a)

L s :

length of stem in T-structure beam specimens, Fig. 8(a)

W :

width of stem in T-structure beam specimens, Fig. 8(a)

E :

Young’s modulus

σ 0.2 :

yield (0.2% proof) strength

σ b :

bending residual stress

σ m :

membrane residual stress

References

  1. Stoney, G. G., “The tension of metallic films deposited by electrolysis,” Proceeding of Royal Society London A, Vol. 82, No. 553, pp. 172–175, 1909.

    Article  Google Scholar 

  2. Allen, M. G., Mehregany, M., Howe, R. T. and Senturia, S. D., “Microfabricated structures for the in situ measurement of residual stress, Young’s modulus and ultimate strain of thin film,” Applied Physics Letters, Vol. 51, No. 4, pp. 241–243, 1987.

    Article  Google Scholar 

  3. Mehregany, M., Howe, R. T. and Senturia, S. D., “Novel microstructures for the in situ measurement of mechanical properties of thin films,” Journal of Applied Physics, Vol. 62, No. 9, pp. 3579–3584, 1987.

    Article  Google Scholar 

  4. Guckel, H., Burns, D., Rutigliano, C., Lovell, E. and Choi, B., “Diagnostic microstructures for the measurement of intrinsic strain in thin films,” Journal of Micromechanics and Microengineering, Vol. 2, No. 2, pp. 86–95, 1992.

    Article  Google Scholar 

  5. Wricson, F., Greek, S., Soderkvist, J. and Schweitz, J.-A., “High sensitivity surface micromachined structures for internal stress and stress gradient evaluation,” Journal of Micromechanics and Microengineering, Vol. 7, No. 1, pp. 30–36, 1997.

    Article  Google Scholar 

  6. Bhushan, B., “Handbook of Nanotechnology, Chapter 34: Mechanical properties of micromachined structures,” Springer, 2004.

  7. Yang, E. H. and Yang, S. S., “The quantitative determination of the residual stress profile in oxidized p+ silicon films,” Sensors and Actuators A: Physical, Vol. 54, No. 1–3, pp. 684–689, 1996.

    Article  Google Scholar 

  8. American Society of Mechanical Engineers, “ASME Boiler and Pressure Vessel Code Section III,” 1992.

  9. Penny, R. K. and Marriot, D. L., “Design for Creep,” Chapman & Hall, 1995.

  10. Hechmer, J. L. and Hollinger, G. L., “3D stress criteria guidelines for application,” Welding Research Council Bulletin Vol. 429, 1998.

  11. Dong, P., “A structural stress definition and numerical implementation for fatigue analysis of welded joints,” International Journal of Fatigue, Vol. 23, No. 10, pp. 865–876, 2001.

    Article  Google Scholar 

  12. Dong, P., “Length scale of secondary stresses in fracture and fatigue,” International Journal of Pressure Vessels and Pi**, Vol. 85, No. 3, pp. 128–143., 2008.

    Article  Google Scholar 

  13. Bromley, E. I., Randall, J. N., Flanders, D. C. and Mountain, R. W., “A technique for the determination of stress in thin-films,” Journal of Vacuum Science and Technology B, Vol. 1, No. 4, pp. 1364–1366, 1983.

    Article  Google Scholar 

  14. Hardwick, D. A., “The mechanical properties of thin films: a review,” Thin Solid Film, Vol. 154, No. 1–2, pp. 109–124, 1987.

    Article  Google Scholar 

  15. Nix, W., “Mechanical properties of thin films,” Metallurgical Transactions A, Vol. 20, No. 11, pp. 2217–2245, 1989.

    Article  Google Scholar 

  16. Johansson, S., Schweitz, J. A., Tenez, L. and Tiren, J., “Fracture testing of silicon micro-elements in situ in a scanning electron microscope,” Journal of Applied Physics, Vol. 63, No. 10, pp. 4799–4803, 1988.

    Article  Google Scholar 

  17. Komai, K., Minoshima, K., Tawara, H., Inoue, S. and Sunako, K., “Development of mechanical testing machine for microelements and fracture strength evaluation of single-crystalline silicon micro-elements,” Transaction of Japanese Society of Mechanical Engineers A, Vol. 60, No. 569, pp. 52–58, 1994.

    Google Scholar 

  18. Sharpe, W. N. Jr., Yuan, B. and Edwards, R. L., “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, Vol. 6, No. 3, pp. 193–199, 1997.

    Article  Google Scholar 

  19. Srikar, V. T. and Spearing, S. M., “A critical review of microscale mechanical testing methods used in the design of micromechanical systems,” Experimental Mechanics, Vol. 43, No. 3, pp. 238–247, 2003.

    Article  Google Scholar 

  20. Connolley, T., Mchugh, P. E. and Bruzzi, M., “A review of deformation and fatigue of metals at small size scale,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 28, No. 12, pp. 1119–1152, 2005.

    Article  Google Scholar 

  21. Boroch, R., Wiaranowski, J., Mueller-Fieldler, R., Ebert, M. and Bagdahn, J., “Characterization of strength properties of thin polycrystalline silicon films for MEMS applications,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 30, No. 1, pp. 2–12, 2007.

    Article  Google Scholar 

  22. Park, J.-H., Kim, C. Y., Choa, S. H., Lee, C. S., Che, W. S. and Song, J. H., “New structures and techniques for easy axial loading test of static and fatigue properties of MEMS materials,” Key Engineering Materials, Vol. 297–300, pp. 545–550, 2005.

    Article  Google Scholar 

  23. Park, J.-H., Kim, Y.-J., Myung, M. S., Lee, C. S., Choa, S. H. and Choi, N. S., “Novel test procedure of tensile test for MEMS materials,” Key Engineering Materials, Vol. 321–323, pp. 136–139, 2006.

    Article  Google Scholar 

  24. ABAQUS, “ABAQUS Standard/User’s Manual Version 6.4,” 2005.

  25. Crandall, S. H., Dahl, N. C. and Lardner, T. J., “An Introduction to the Mechanics of Solids,” McGraw-Hill International Edition, 1978.

  26. Park, M. K., Sindhu, R. A., Lee, S. J., Zai, B. A. and Mehboob, H., “A residual stress evaluation in laser welded lap joint with hole drilling method,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 89–95, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH., Bae, HY. & Kim, YJ. Determination of tensile properties and residual stresses of Ni-Co thin films. Int. J. Precis. Eng. Manuf. 11, 771–778 (2010). https://doi.org/10.1007/s12541-010-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-010-0091-3

Keywords

Navigation