Log in

Quantifying Susceptibility to Solidification Cracking in Oscillated CM247LC Superalloy Welds via Varestraint Testing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

CM247LC, a Ni-based superalloy, is employed in the high-temperature components of gas turbines, such as the blades. However, the welds of CM247LC are highly susceptible to various types of cracking, thereby limiting the applicability of this superalloy. To overcome this critical limitation, in this paper, we propose a novel Varestraint test procedure for evaluating the susceptibility of oscillated CM247LC welds to solidification cracking. By visualizing the temperature in real time during testing, we quantitatively evaluate changes in the susceptibility of CM247LC to solidification cracking owing to arc oscillation. The solidification cracking temperature range (SCTR) for the CM247LC alloy is 400 K in the case of linear welding, whereas it is 275  and 475 K in the case of oscillation welding at frequencies of 0.6 and 1.2 Hz, respectively. Notably, the SCTR narrows or widens depending on the oscillation conditions. By contrast, almost no changes in the mushy zone range are theoretically calculated via the diffusion-controlled Scheil equation. This result suggests that the SCTR must be closely examined according to the oscillation conditions in the welding-based manufacturing of gas turbine blades from CM247LC. The mechanism underlying the reduction in the SCTR under oscillation welding (0.6 Hz) is clarified based on the relationship between the solidification microstructure in the crack path and propagation behavior of the solidification crack. This mechanism is also explained by the equiaxed dendritic subgrain structure, the formation of which is attributed to the lower ratio between the obtained temperature gradient (G) and the sonification rate (R), i.e., G/R (47.26 K∙s/mm2) of the oscillated welds compared with those of the linear welds (146.34 K∙s/mm2), which enhances the crack propagation resistance. Furthermore, solidification grain refinement, which also could have enhanced the solidification crack propagation resistance, is detected.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

SCTR:

Solidification cracking temperature range

GTAW:

Gas tungsten arc welding

IPF:

Inverse pole figure

IQ:

Image quality

CRS:

Critical strain rate

G:

Temperature gradient

R:

Sonification rate

EBDS:

Electron backscatter diffraction

SEM:

Scanning electron microscope

EPMA:

Electron probe microanalysis

OM:

Optical microscopy

References

  1. E.J. Chun, Y.S. Jeong, K.M. Kim, H. Lee, S.M. Seo, J. Adv. Join. Proc. 4, 100069 (2021). https://doi.org/10.1016/j.jajp.2021.100069

    Article  Google Scholar 

  2. S. Griffiths, H. Ghasemi Tabasi, T. Ivas, X. Maeder, A. De Luca, K. Zweiacker, R. Wróbel, J. Jhabvala, R.E. Logé, C. Leinenbach, Addit. Manuf. 36, 101443 (2020). https://doi.org/10.1016/j.addma.2020.101443

    Article  CAS  Google Scholar 

  3. K.B. Na, C.I. Lee, J.H. Park, S.M. Cho, J. Weld. Join. 37(4), 357 (2019). https://doi.org/10.5781/JWJ.2019.37.4.10

    Article  Google Scholar 

  4. C.H. Lee, Met. Mater. Int. 2, 81 (1996). https://doi.org/10.1007/BF03025950

    Article  CAS  Google Scholar 

  5. G. Bidron, A. Doghri, T. Malot, F. Fournier-dit-Chabert, M. Thomas, P. Peyre, J. Mater. Process. Tech. 277, 116461 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116461

    Article  CAS  Google Scholar 

  6. K.-T. Hsu, H.-S. Wang, H.-G. Chen, P.-C. Chen, Metals 6, 238 (2016). https://doi.org/10.3390/met6100238

  7. S. Griffiths, H. Ghasemi-Tabasi, A. De Luca, J. Pado, S.S. Joglekar, J. Jhabvala, R.E. Logé, C. Leinenbach, Mater. Charact. 171, 110815 (2021). https://doi.org/10.1016/j.matchar.2020.110815

    Article  CAS  Google Scholar 

  8. M. Gerstgrasser, M. Cloots, J. Stirnimann, K. Wegener, J. Mater. Process. Tech. 289, 116948 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116948

    Article  CAS  Google Scholar 

  9. J.H. Boswell, D. Clark, W. Li, M.M. Attallah, Mater. Design 174, 107793 (2019). https://doi.org/10.1016/j.matdes.2019.107793

    Article  CAS  Google Scholar 

  10. S. Kim, C.-K. Chun, J. Weld. Join. 38(4), 359 (2020). https://doi.org/10.5781/JWJ.2020.38.4.4

    Article  Google Scholar 

  11. S.-Y. Park, Y. Kang, D. Oh, S. Song, H.-U. Hong, J. Weld. Join. 39(1), 45 (2021). https://doi.org/10.5781/JWJ.2021.39.1.5

    Article  Google Scholar 

  12. S. Lee, J. Kim, J. Choe, S.-W. Kim, J.-K. Hong, Y.S. Choi, Met. Mater. Int. 27, 78 (2021). https://doi.org/10.1007/s12540-020-00770-1

    Article  CAS  Google Scholar 

  13. J.C. Lippold, in Welding Metallurgy and Weldability, 1st edn. (Wiley, Hoboken, 2015), pp. 84–119

  14. J.N. Dupont, J.C. Lippold, S.D. Kiser, in Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st edn. (Wiley, Hoboken, 2009), pp. 100–117

  15. S. Kou, in Welding Metallurgy, 2nd edn. (Wiley, Hoboken, 2003), pp. 263–300

    Google Scholar 

  16. S. Kou, Acta Mater. 88, 366 (2015). https://doi.org/10.1016/j.actamat.2015.01.034

    Article  CAS  Google Scholar 

  17. E.-J. Chun, K. Nishimoto, K. Saida, Weld. World 60, 217 (2016). https://doi.org/10.1007/s40194-016-0293-0

    Article  CAS  Google Scholar 

  18. J.H. Lee, S. Yamashita, T. Ogura, K. Saida, Mater. Today Commun. 24, 101094 (2020). https://doi.org/10.1016/j.mtcomm.2020.101094

    Article  CAS  Google Scholar 

  19. S. Yamashita, K. Saida, Weld. Int. 34, 405 (2020). https://doi.org/10.1080/09507116.2021.1922002

    Article  Google Scholar 

  20. T. Yuan, Z. Luo, S. Kou, Acta Mater. 116, 166 (2016). https://doi.org/10.1016/j.actamat.2016.06.036

    Article  CAS  Google Scholar 

  21. Y.C. Lim, X. Yu, J.H. Cho, J. Sosa, D.F. Farson, S.S. Babu, S. McCracken, B. Flesner, Sci. Technol. Weld. Join. 15, 583 (2010). https://doi.org/10.1179/136217110X12720264008277

    Article  CAS  Google Scholar 

  22. Y.C. Lim, X. Yu, J.H. Cho, J. Sosa, D.F. Farson, S.S. Babu, S. McCracken, B. Flesner, Sci. Technol. Weld. Join. 15, 400 (2010). https://doi.org/10.1179/136217110X12720264008231

    Article  CAS  Google Scholar 

  23. X. Wang, Z. Zhang, Q. Zhang, Q. Sun, Z. Wang, Opt. Laser Technol. 143, 107387 (2021). https://doi.org/10.1016/j.optlastec.2021.107387

    Article  CAS  Google Scholar 

  24. X. Zhou, H. Zhao, F. Liu, B. Yang, B. Xu, B. Chen, C. Tan, Opt. Laser Technol. 144, 107389 (2021). https://doi.org/10.1016/j.optlastec.2021.107389

  25. B.-H. Kim, N.-H. Kang, Y.-H. Park, Y.-N. Ahn, C.-H. Kim, J.-H. Kim, J. Weld. Join. 27(4), 49 (2009). https://doi.org/10.5781/KWJS.2009.27.4.049

    Google Scholar 

  26. S.K. Dinda, J. Kar, S. Jana, G.G. Gopal Roy, P. Srirangam, J. Mater. Process. Tech. 265, 191 (2019). https://doi.org/10.1016/j.jmatprotec.2018.10.026

    Article  CAS  Google Scholar 

  27. J. Kar, D. Chakrabarti, S.K. Roy, G.G. Roy, J. Mater. Process. Tech. 266, 165 (2019). https://doi.org/10.1016/j.jmatprotec.2018.10.040

    Article  CAS  Google Scholar 

  28. C. Chen, D. Wanyong Wang, Y. Li, Y. Cai, K. Zhang, J. Manuf. Proc. 57, 798 (2020). https://doi.org/10.1016/j.jmapro.2020.07.048

    Article  Google Scholar 

  29. Y. Meng, Y. Lu, Z. Li, S. Zhao, M. Gao, Intermetallics 133, 107175 (2021). https://doi.org/10.1016/j.intermet.2021.107175

    Article  CAS  Google Scholar 

  30. S. Kou, Y. Le, Metall. Trans. A 16, 1345 (1985). https://doi.org/10.1007/BF02670338

    Article  Google Scholar 

  31. X. Yu, Y.C. Lim, R. Smith, S.S. Babu, D.F. Farson, J.C. Lippold, S. McCracken, Mater. Sci. Technol. 30, 930 (2014). https://doi.org/10.1179/1743284713Y.0000000358

    Article  CAS  Google Scholar 

  32. C. Kim, M. Kang, N. Kang, Sci. Technol. Weld. Join. 18, 57 (2013). https://doi.org/10.1179/1362171812Y.0000000073

    Article  CAS  Google Scholar 

  33. M. Kang, H.N. Han, Cheolhee Kim. Materials 11, 648 (2018). https://doi.org/10.3390/ma11040648

    Article  CAS  Google Scholar 

  34. T. Sun, P. Franciosa, F. Conghui Liu, D.C. Pierro, Appl. Sci. 11, 4522 (2021). https://doi.org/10.3390/app11104522

    Article  CAS  Google Scholar 

  35. T. Kannengiesser, T. Boellinghaus, Weld. World 58, 397 (2014). https://doi.org/10.1007/s40194-014-0126-y

    Article  Google Scholar 

  36. J.S. Lee, J.H. Gu, H.M. Jung, E.H. Kim, Y.G. Jung, J.H. Lee, Mater. Today Proc. 1, 3 (2014). https://doi.org/10.1016/j.matpr.2014.09.002

    Article  Google Scholar 

  37. T. Campanella, C. Charbon, M. Rappaz, Metall. Mater. Trans. A 35, 3201 (2004). https://doi.org/10.1007/s11661-004-0064-1

    Article  Google Scholar 

  38. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57, 941 (2009). https://doi.org/10.1016/j.actamat.2008.10.020

    Article  CAS  Google Scholar 

  39. A. Kumar, P. Dutta, J. Phys. D: Appl. Phys. 41, 155501 (2008). https://doi.org/10.1088/0022-3727/41/15/155501

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Trade, Industry, and Energy of the Republic of Korea [Grant Number: 20011103].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Joon Chun.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KM., Lee, U., Lee, H. et al. Quantifying Susceptibility to Solidification Cracking in Oscillated CM247LC Superalloy Welds via Varestraint Testing. Met. Mater. Int. 29, 777–794 (2023). https://doi.org/10.1007/s12540-022-01250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01250-4

Keywords

Navigation