Log in

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti–6Al–4V Prepared by Direct Energy Deposition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of Cr and Fe addition on the mechanical properties of Ti–6Al–4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior β phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti–6Al–4V resulted in a partially melted Ti–6Al–4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti–33Fe) and the Ti–6Al–4V powder, which induced the formation of a thick liquid layer surrounding Ti–6Al–4V. The ductility of Fe-added Ti–6Al–4V was thus poorer than that of Cr-added Ti–6Al–4V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zhang, X. Lin, J. Chen, W. Huang, Chin. Opt. Lett. 7, 498–501 (2009)

    Article  Google Scholar 

  2. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menon, S. Wiener, Additive Manufacturing of Metals: The Technology, Materials, Design and Production (Springer, London, 2017), p. 24

    Book  Google Scholar 

  3. F. Caiazzo, Opt. Laser Technol. 103, 193–198 (2018)

    Article  CAS  Google Scholar 

  4. K. Zhang, S. Wang, W. Liu, X. Shang, Mater. Des. 55, 104–119 (2014)

    Article  CAS  Google Scholar 

  5. B. Baufeld, O.V.D. Biest, R. Gault, Mater. Des. 31, S106–S111 (2010)

    Article  CAS  Google Scholar 

  6. J. Yu, M. Rombouts, G. Maes, F. Motmans, Phys. Proc. 39, 416–424 (2012)

    Article  CAS  Google Scholar 

  7. B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Acta Mater. 133, 120–133 (2017)

    Article  CAS  Google Scholar 

  8. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365–369 (2017)

    Article  CAS  Google Scholar 

  9. C. Schneider-Maunoury, L. Weiss, P. Acquier, D. Boisselier, P. Laheurte, Addit. Manuf. 17, 55–66 (2017)

    Article  CAS  Google Scholar 

  10. Y. Itoh, H. Miura, T. Uematsu, T. Osada, K. Sato, J. Solid Mech. Mater. Eng. 3, 921–930 (2009)

    Article  Google Scholar 

  11. T. Ahmed, H. Rack, Mat. Sci. Eng. A 243, 206–211 (1998)

    Article  Google Scholar 

  12. Y. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W. Huang, Acta Mater. 132, 82–95 (2017)

    Article  CAS  Google Scholar 

  13. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. StJohn, Mater. Sci. Forum 654–656, 1472–1475 (2010)

    Article  Google Scholar 

  14. P.A. Kobryn, S.L. Semiatin, J. Mater. Proc. Tech. 135, 330–339 (2003)

    Article  CAS  Google Scholar 

  15. S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, J. Mater. Proc. Tech. 178, 135–142 (2006)

    Article  CAS  Google Scholar 

  16. J. Hunt, Mater. Sci. Eng. 65, 75–83 (1984)

    Article  CAS  Google Scholar 

  17. M. Yan, P. Yu, Sintering Techniques of Materials (IntechOpen, 2015)

  18. P.A. Kobryn, S.L. Semiatin, JOM 53, 40–42 (2001)

    Article  CAS  Google Scholar 

  19. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, J. Alloy. Compd. 632, 505–513 (2015)

    Article  CAS  Google Scholar 

  20. R.R. Boyer, G.E. Welsch, E.W. Collings (eds.), Materials Properties Handbook: Titanium Alloys (ASM International, Materials Park, 1994), p. 10

    Google Scholar 

  21. C. Leyens, M. Peters, Titanium and Titanium Alloys (Wiley, New York, 2003)

    Book  Google Scholar 

  22. U. Diebold, Surf. Sci. Rep. 48, 53–229 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Trade, Industry and Energy (Grant No. 10077677) and supported by grants from the Fundamental Research Program (PNK5520) of the Korea Institute of Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Namhyun Kang or Jaekeun Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, Y., Lee, S., Seo, SM. et al. Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti–6Al–4V Prepared by Direct Energy Deposition. Met. Mater. Int. 24, 1213–1220 (2018). https://doi.org/10.1007/s12540-018-0148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0148-x

Keywords

Navigation