Log in

Rapid formation of Ti oxycarbide on the surface of Ti induced by electro-discharge-heat-treatment in a low vacuum atmosphere

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A single pulse of 2.0 to 3.5 kJ of input energy from a 450 μF capacitor was applied in a low vacuum atmosphere to a commercially pure Ti rod. The electro-discharge process produced rapid temperature increases from 569 to 2516 °C in times as short as 159 μsec, depending on the input energy. The microstructure with equiaxed α grains was preserved after the electro-discharge regardless of applied input energy. At the same time, the original surface of Ti rod was modified by the electro-discharge into the form of primarily titanium oxycarbide from TiO2. A much higher value of hardness that was observed at the edge of the cross-section was thus attributed to carbon- and oxygen-induced solid-solution hardening that occurred during the electro-discharge process. From these results, it is concluded that the rapid formation of titanium oxycarbide on the Ti surface can be induced in times as short as 159 μsec by the electro-discharge process without changing its unique microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Saji and H. C. Choe, Met. Mater. Int. 17, 275 (2011).

    Article  Google Scholar 

  2. M.G. Kim, Met. Mater. Int. 17, 705 (2011).

    Article  Google Scholar 

  3. W. Sha and S. Malinov, Titanium Alloys: Modelling of Microstructure, Properties and Applications, pp.17–32, Woodhead Publishing, Cambridge (2009).

    Book  Google Scholar 

  4. K. G. Budinski, Wear 151, 203 (1991).

    Article  Google Scholar 

  5. H. Guleryuz and H. Cimenoglu, Biomaterials 25, 3325 (2004).

    Article  Google Scholar 

  6. P. A. Dearnley, K. L. Dahm, and H. Cimenoglu, Wear 256, 469 (2004).

    Article  Google Scholar 

  7. F. M. Guclu, H. Cimenoglu, and E. S. Kayali, Mater. Sci. Eng. C 26, 1367 (2006).

    Article  Google Scholar 

  8. M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil. S. Migliaccio, C. D. Rocca, S. Leccisotti, A. Lioi, M. Scandurra, G. De Maria, D. Ferro, F. Pu, G. Panzini, L. Politi, and R. Scandurra, Biomaterials 28, 595 (2007).

    Article  Google Scholar 

  9. A. Shenhar, I. Gotman, S. Radin, P. Ducheyne, and E. Y. Gutmanas, Surf. Coat. Technol. 126, 210 (2000).

    Article  Google Scholar 

  10. S. F. Coll and M. A. Pellman, Trans. Biomater. Soc. 16, 171 (1993).

    Google Scholar 

  11. J. M. Chappé, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, and J. Takadoum, Appl. Surf. Sci. 253, 5312 (2007).

    Article  Google Scholar 

  12. F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, P. Goudeau, J. P. Rivière, K. Pischow, and J. de Rijk, Thin Solid Films 447–448, 449 (2004).

    Article  Google Scholar 

  13. P. Carvalho, J. M. Chappé, L. Cunha, S. Lanceros-Méndez, P. Alpuim, F. Vaz, E. Alves, C. Rousselot, J. P. Espinós, and A. R. González-Elipe, J. Appl. Phys. 103, 104907 (2008).

    Article  Google Scholar 

  14. H. Le Dréo, O. Banakh, H. Keppner, P. A. Steinmann, D. Briand, and N. F. de Rooij, Thin Solid Films 515, 952 (2006).

    Article  Google Scholar 

  15. N. M. G. Parreira, N. J. M. Carvalho, F. Vaz, and A. Cavaleiro, Surf. Coat. Technol. 200, 6511 (2006).

    Article  Google Scholar 

  16. M. Fenker, H. Kappl, O. Banakh, N. Martin, and J. F. Pierson, Surf. Coat. Technol. 201, 4152 (2006).

    Article  Google Scholar 

  17. M. Grafouté, C. Petitjean, C. Rousselot, J. F. Pierson, and J. M. Grenèche, Scripta Mater. 56, 153 (2007).

    Article  Google Scholar 

  18. A. C. Fernandes, F. Vaz, L. Rebouta, A. Pinto, E. Alves, N. M. G. Parreira, P. Goudeau, E. Le Bourhis, and J. P. Rivière, Surf. Coat. Technol. 201, 5587 (2007).

    Article  Google Scholar 

  19. B. Kim, T. T. T. Trang, and N. J. Kim, Met. Mater. Int. 20, 35 (2014).

    Article  Google Scholar 

  20. C.-S. Han and Y.-H. Kim, Met. Mater. Int. 20, 153 (2014).

    Article  Google Scholar 

  21. M. Rahman, I. Reid, P. Duggan, D. P. Dowling, G. Hughes, and M. S. J. Hashmi, Surf. Coat. Technol. 210, 4865 (2007).

    Article  Google Scholar 

  22. L. Thair, U. Kamachi Mudali, R. Asokamani, and Baldev Raj, Surf. Eng. 20, 11 (2004).

    Article  Google Scholar 

  23. R. Wei, T. Booker, C. Rincon, and J. Arps, Surf. Coat. Technol. 186, 305 (2004).

    Article  Google Scholar 

  24. S. H. Jeong, J. H. Lee, and K. M. Lee, Korean J. Met. Mater. 52, 439 (2014).

    Article  Google Scholar 

  25. H. C. Man, M. Bai, and F. T. Cheng, Appl. Surf. Sci. 258, 436 (2011).

    Article  Google Scholar 

  26. W. H. Lee and C. Y. Hyun, J. Mater. Process. Technol. 189, 219 (2007).

    Article  Google Scholar 

  27. Y. J. Jo, C. M. Lee, H. S. Jang, N. S. Lee, J. H. Suk, and W. H. Lee, J. Mater. Process. Technol. 194, 121 (2007).

    Article  Google Scholar 

  28. D. K. Kim, H. R. Pak, and K. Okazaki, Mater. Sci. Eng. A 104, 191 (1988).

    Article  Google Scholar 

  29. J. Unnam, R. N. Shenoy, and R. K. Clark, Oxidation of Metals 26(3/3), 232 (1986).

    Google Scholar 

  30. M. Rahman, I. Reid, P. Duggan, D. P. Dowling, G. Hughes, and M. S. J. Hashmi, Surf. Coat. Technol. 210, 4865 (2007).

    Article  Google Scholar 

  31. X. Chun and Z. Wen-feng, Trans. Nonferrous Met. Soc. China, 20, 2162 (2010).

    Article  Google Scholar 

  32. B. V. Crist, Handbook of Monochromatic XPS Spectra, pp. 35–41, John Willey & Sons, Hoboken (2000).

    Google Scholar 

  33. J. M. Chappé, A. C. Fernandes, C. Moura, E. Alves, N. P. Barradas, N. Martin, J. P. Espinós, and F. Vaz, Surf. Coat. Technol. 206, 2525 (2012).

    Article  Google Scholar 

  34. D. Georgiev, R. Baird, G. Newaz, G. Auner, R. Witte, and H. Herfurth, Appl. Surf. Sci. 236, 71 (2004).

    Article  Google Scholar 

  35. T. Hanawa and M. Ota, Biomaterials 12, 767 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y.J., Kim, Y.H., Jo, Y.H. et al. Rapid formation of Ti oxycarbide on the surface of Ti induced by electro-discharge-heat-treatment in a low vacuum atmosphere. Met. Mater. Int. 21, 159–165 (2015). https://doi.org/10.1007/s12540-015-1019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-1019-3

Keywords

Navigation