Log in

Geo-spatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and In Situ Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The aim of this study is to generate a reliable dynamic snow avalanche hazard map using analytical hierarchy process method based on multisource geo-spatial data for the Chowkibal–Tangdhar (C–T) road axis in Jammu and Kashmir (J&K), India. Avalanche-prone areas of C–T axis have been demarcated using three causative parameters, i.e., terrain, ground cover and meteorological parameters. Terrain parameters, e.g., elevation, slope, aspect and curvature, have been estimated from Advanced Spaceborne Thermal Emission and Reflection Radiometer, Global Digital Elevation Model Version 2. Ground cover information has been extracted from Landsat-8 data. Meteorological parameters maps, i.e., snow depth, relative humidity and air temperature, have been generated using geo-spatial interpolation techniques of in situ data. All the parameters have been incorporated in Geographic Information System environment to generate the hazard map. Validation of hazard map was accomplished with the area under the curve method. The prediction rate was observed to be 93.2%. Further, 20% of the study area was estimated having no hazard, 55% as low hazard, 12% as moderate hazard and 13% as high hazard on April 13, 2015. Dynamic hazard map thus generated using remote sensing and in situ data will be useful for mitigation of snow avalanche hazard, regional planning for development of infrastructure, transportation, troops movement, army deployments and communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul, A. A., Naqvi, H. R., & Firdouse, Z. (2015). An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan mountain. Journal of Mountain Science, 12(6), 1499–1510. https://doi.org/10.1007/s11629-014-3274-z.

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28, 437–442.

    Article  Google Scholar 

  • Bathrellos, G. D., Gaki-Papanastassiou, K., Skilodimou, H. D., Papanastassiou, D., & Chousianitis, K. G. (2012). Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters. Environmental Earth Sciences, 66(2), 537–548. https://doi.org/10.1007/s12665-011-1263-x.

    Article  Google Scholar 

  • Bellaire, S., Jamieson, J. B., & Fierz, C. (2011). Forcing the snow-cover model SNOWPACK with forecasted weather data. Cryosphere, 5(4), 1115–1125. https://doi.org/10.5194/tc-5-1115-2011.

    Article  Google Scholar 

  • Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20(12), 1527–1532. https://doi.org/10.1175/1520-0450(1981)020%3c1527:NEFCVP%3e2.0.CO;2.

    Article  Google Scholar 

  • Bui, D. T., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural Hazards, 59(3), 1413–1444. https://doi.org/10.1007/s11069-011-9844-2.

    Article  Google Scholar 

  • Chang, C. L., & Chao, Y. C. (2012). Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan. Environmental Monitoring and Assessment, 184(5), 2939–2945. https://doi.org/10.1007/s10661-011-2162-z.

    Article  Google Scholar 

  • Chen, V. Y. C., Lien, H. P., Liu, C. H., Liou, J. J. H., Tzeng, G. H., & Yang, L. S. (2011). Fuzzy MCDM approach for selecting the best environment-watershed plan. Applied Soft Computing Journal, 11(1), 265–275. https://doi.org/10.1016/j.asoc.2009.11.017.

    Article  Google Scholar 

  • Colbeck, S., Akiyaya, E., Armstrong, R. (1990). International classification of seasonal snow on the ground. In International commission for snow and ice (IAHS), world data center for glaciology of Colorado, Boulder, CO, USA.

  • Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 43(3), 381–391.

    Google Scholar 

  • Dewali, S. K. (2010). A prototype model for integration of topographical and meteorological parameters for avalanche hazard analysis. DRDO Science Spectrum (pp. 27–36).

  • Dewali, S. K., Mani, S., Singh, P. S., & Sarwade, R. N. (2009). A GIS-based avalanche hazard zonation scheme for NW Himalaya using topographical and meteorological variables. In Proceedings of international symposium on snow and avalanches (ISSA-09), Manali, India, April 6–10, 2009 (pp. 99–107).

  • Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., et al. (2015). Western disturbances: A review. Reviews of Geophysics. https://doi.org/10.1002/2014RG000460.

    Article  Google Scholar 

  • Ezzati, S., Najafi, A., & Bettinger, P. (2016). Finding feasible harvest zones in mountainous areas using integrated spatial multi-criteria decision analysis. Land Use Policy, 59, 478–491. https://doi.org/10.1016/j.landusepol.2016.09.020.

    Article  Google Scholar 

  • Gusain, H. S., Chand, D., Thakur, N., Singh, A., Ganju, A. (2009). Snow avalanche climatology of Indian western Himalaya. In International symposium on snow and avalanches (ISSA), 6–10 April, Manali, India.

  • Gusain, H. S., Kala, M., Ganju, A., Mishra, V. D., & Snehmani, (2015). Observations of snow-meteorological parameters in Gangotri glacier region. Current Science, 109(11), 2116–2120. https://doi.org/10.18520/v109/i11/2116-2120.

    Article  Google Scholar 

  • Gusain, H. S., Mishra, V. D., & Arora, M. K. (2014). Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. Remote Sensing Letters, 5, 83–92.

    Article  Google Scholar 

  • Gusain, H. S., Mishra, V. D., Arora, M. K., Mamgain, S., & Singh, D. K. (2016). Operational algorithm for generation of snow depth maps from discrete data in Indian western Himalaya. Cold Regions Science and Technology, 126, 22–29. https://doi.org/10.1016/j.coldregions.2016.02.012.

    Article  Google Scholar 

  • Gusain, H. S., Mishra, V., & Singh, D. K. (2018). Study of a snow avalanche accident along Chowkibal–Tangdhar road in Kupwara district, Jammu and Kashmir, India. Current Science, 115(05), 969–972. https://doi.org/10.18520/cs/v115/i5/962-969.

    Article  Google Scholar 

  • Jaafari, A., Najafi, A., Pourghasemi, H. R., Rezaeian, J., & Sattarian, A. (2014). GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4), 909–926. https://doi.org/10.1007/s13762-013-0464-0.

    Article  Google Scholar 

  • Joshi, J. C., & Srivastava, S. (2014). A hidden Markov model for avalanche forecasting on Chowkibal–Tangdhar road axis in Indian Himalayas. Journal of Earth System Science, 123(8), 1771–1779. https://doi.org/10.1007/s12040-014-0510-4.

    Article  Google Scholar 

  • König, M., Winther, J. G., & Isaksson, E. (2001). Measuring snow and glacier ice properties from satellite. Reviews of Geophysics, 39(1), 1–27. https://doi.org/10.1029/1999RG000076.

    Article  Google Scholar 

  • Krishna, A. P. (1996). Cover: Satellite remote sensing applications for snow cover characterization in the morphogenetic regions of upper Tista river basin, Sikkim Himalaya. International Journal of Remote Sensing, 17(4), 651–656. https://doi.org/10.1080/01431169608949035.

    Article  Google Scholar 

  • Kulkarni, A. V., & Bahuguna, I. M. (2002). Glacial retreat in the Baspa basin, Himalayas, monitored with satellite stereo data. Journal of Glaciology, 48, 171–172.

    Article  Google Scholar 

  • Kumar, S., Snehmani, Srivastava, P. K., Gore, A., & Singh, M. K. (2016). Fuzzy–frequency ratio model for avalanche susceptibility map**. International Journal of Digital Earth, 9(12), 1168–1184. https://doi.org/10.1080/17538947.2016.1197328.

    Article  Google Scholar 

  • Maestro, A., Somoza, L., Medialdea, T., Talbot, C. J., Lowrie, A., Vázquez, J. T., et al. (2003). Large-scale slope failure involving Triassic and middle Miocene salt and shale in the Gulf of Cádiz (Atlantic Iberian Margin). Terra Nova, 15(6), 380–391. https://doi.org/10.1046/j.1365-3121.2003.00513.x.

    Article  Google Scholar 

  • McClung, D. M. (2002). The elements of applied avalanche forecasting part I: The human issues. Natural Hazards, 26(2), 111–129. https://doi.org/10.1023/A:1015665432221.

    Article  Google Scholar 

  • McClung, D. M., & Schaerer, P. (2006). The avalanche handbook (3rd ed.). Seattle, WA: The Mountaineers Books.

    Google Scholar 

  • Nagarajan, R., Venkataraman, G., & Snehmani, (2014). Rule based classification of potential snow avalanche areas. Natural Resources and Conservation, 2(2), 11–24.

    Google Scholar 

  • Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., Gokceoglu, C., & Pradhan, B. (2014). GIS-based landslide susceptibility map** with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences, 7(5), 1857–1878. https://doi.org/10.1007/s12517-012-0825-x.

    Article  Google Scholar 

  • Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility map** using GIS. Computers & Geosciences, 51, 350–365. https://doi.org/10.1016/j.cageo.2012.08.023.

    Article  Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. Education. https://doi.org/10.3414/ME10-01-0028.

    Article  Google Scholar 

  • Saaty, T. L. (1988). What is the analytic hierarchy process? In G. Mitra, H. Greenberg, F. Lootsma, M. Rijkaert, & H. Zimmermann (Eds.), Mathematical models for decision support (pp. 109–121). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2001). Models, methods, concepts and applications of the analytic hierarchy process (Vol. 175). Berlin: Springer. https://doi.org/10.1007/978-1-4615-1665-1.

    Book  Google Scholar 

  • Schweizer, J., Jamieson, B., & Reuter, B. (2013). How surface warming affects dry-snow instability. The Avalanche Review, 31(3), 25–31.

    Google Scholar 

  • Sharma, S. S., & Ganju, A. (2000). Complexities of avalanche forecasting in Western Himalaya—An overview. Cold Regions Science and Technology, 31(2), 95–102. https://doi.org/10.1016/S0165-232X(99)00034-8.

    Article  Google Scholar 

  • Sharma, V., Mishra, V. D., & Joshi, P. K. (2014). Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. International Journal of Remote Sensing, 35(9), 3036–3056. https://doi.org/10.1080/01431161.2014.894665.

    Article  Google Scholar 

  • Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018a). Automated retrieval of snow/ice surface broadband albedo in Beas River Basin, India using landsat-8 satellite images and validation with wireless sensor network data. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-018-0863-2.

    Article  Google Scholar 

  • Singh, D. K., Gusain, H. S., Mishra, V., & Gupta, N. (2018b). Snow cover variability in North-West Himalaya during last decade. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3926-3.

    Article  Google Scholar 

  • Singh, D. K., Gusain, H. S., Mishra, V., Gupta, N., & Das, R. K. (2018c). Automated map** of snow/ice surface temperature using Landsat-8 data in Beas River basin, India, and validation with wireless sensor network data. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3497-3.

    Article  Google Scholar 

  • Singh, D. K., Singh, K. K., Mishra, V. D., & Sharma, J. K. (2012). Formulation of snow depth algorithms for different regions of NW-Himalaya using passive microwave satellite data. International Journal of Engineering Research & Technology, 1(5), 1–9.

    Google Scholar 

  • Singh, K. K., DewaIi, S. K., Singh, D. K., Mishra, V. D., & Kaur, M. (2016). Monitoring of snow surface temperature in North-West Himalaya using passive microwave satellite data. Indian Journal of Radio & Space Physics, 45(March), 20–29.

    Google Scholar 

  • Singh, K. K., Mishra, V. D., Singh, D. K., & Ganju, A. (2013). Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data. Indian Journal of Radio & Space Physics, 42(February), 27–33.

    Google Scholar 

  • Snehmani, Bhardwaj, A., Pandit, A., & Ganju, A. (2014). Demarcation of potential avalanche sites using remote sensing and ground observations: A case study of Gangotri glacier. Geocarto International, 29(5), 520–535. https://doi.org/10.1080/10106049.2013.807304.

    Article  Google Scholar 

  • Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011). Characteristics of ASTER GDEM version 2. In International geoscience and remote sensing symposium (IGARSS) (pp. 3657–3660). https://doi.org/10.1109/IGARSS.2011.6050017.

  • United Nations. (2004). Living with risk. Geneva: United Nations.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shri. Naresh Kumar, Director, Snow and Avalanche Study Establishment (SASE), Chandigarh, for providing facilities to carry out this work and constant motivation during the investigation. The authors would like to acknowledge SASE staff for collecting ground data. We are also thankful to Shri. S. K. Dewali, Shri. Dhirender and Manoj Kumar for providing technical support during the preparation of the manuscript. Authors are thankful to http://earthexplorer.usgs.gov/, USGS for providing Landsat-8 data and GDEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Kumar Singh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.K., Mishra, V.D., Gusain, H.S. et al. Geo-spatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and In Situ Data. J Indian Soc Remote Sens 47, 513–526 (2019). https://doi.org/10.1007/s12524-018-00936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-00936-w

Keywords

Navigation