Log in

A Chloroplast-targeted S1 RNA-binding Domain Protein Plays a Role in Arabidopsis Response to Diverse Abiotic Stresses

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Although accumulating evidence points to the essential roles of nucleus-encoded chloroplast S1 domain-containing proteins (SDPs) in chloroplast RNA metabolism and plant development, functions of chloroplast SDPs in abiotic stress responses are largely unknown. In this study, we investigated the role of a SDP (At1g12800) in Arabidopsis response to diverse abiotic stresses. Analysis of the sdp knockout mutant and complementation lines demonstrated that loss of SDP function results in decreased survival rate of Arabidopsis under salt, heat, UV, or freezing stress, but not under dehydration stress or ABA. In consistent with a previous report demonstrating that SDP is involved in chloroplast rRNA processing, translation in chloroplasts was impaired in the sdp mutant. Expression of several nuclear genes involved in stress response and adaptation was altered in the sdp mutant subjected to different abiotic stresses, suggesting that modulation of chloroplast translation affects the expression of nuclear genes under abiotic stresses. These data reveal that chloroplast-localized SDP plays an important role in abiotic stress response by modulating chloroplast translation and the expression of nuclear genes possibly via unidentified plastid-to-nucleus signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142

    Article  CAS  PubMed  Google Scholar 

  • Aliprandi P, Sizun C, Perez J, Mareuil F, Caputo S, Leroy JL, Odaert B, Laalami S, Uzan M, Bontems F (2008) S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions:an NMR and SAXS analysis. J Biol Chem 283:13289–13301

    Article  CAS  PubMed  Google Scholar 

  • Barkan A (2011) Expression of plastid genes:organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Yamaguchi K, Mayfield SP (2004) Chloroplast elongation factor Ts pro-protein is an evolutionarily conserved fusion with the S1domain-containing plastid-specific ribosomal protein-7. Plant Cell 16:3357–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants:stress signaling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Bowman SM, Patel M, Yerramsetty P, Mure CM, Zielinski AM, Bruenn JA, Berry JO (2013) A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC Plant Biol 13:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briani F, Curti S, Rossi F, Carzaniga T, Mauri P, Deho G (2008) Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli. RNA 14:2417–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Campo EM (2009) Post-transcriptional control of chloroplast gene expression. Gene Regul Syst Biol 3:31

    Google Scholar 

  • Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016) Learning the languages of the chloroplast:Retrograde signaling and beyond. Annu Rev Plant Biol 67:25–53

    Article  CAS  PubMed  Google Scholar 

  • Chekanova JA, Dutko JA, Mian IS, Belostotsky DA (2002) Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3’→ 5’ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 30:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, Park YR, Park SJ, Kang H (2015) Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. Plant Physiol Biochem 96:132–140

    Article  CAS  PubMed  Google Scholar 

  • Delvillani F, Papiani G, Deho G, Briani F (2011) S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Res 39:7702–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper DE, Pratt CW, von Hippel PH (1977) Escherichia coli ribosomal protein S1 has two polynucleotide binding sites. Proc Natl Acad Sci USA 74:4786–4790

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Jung HJ, Kim BM, Xu T, Lee K, Kim Y-O, Kang H (2015) A chloroplast-localized S1 domain-containing protein SRRP1 plays a role in Arabidopsis seedling growth in the presence of ABA. J Plant Physiol 189:34–41

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Xu T, Lee K, Lee KH, Kang H (2014) A chloroplast-localized DEAD-box RNA helicase AtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol Biochem 82:309–318

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Lee K, Lee KH, Jung S, Jeon Y, Pai H-S, Kang H (2015) A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J 83:277–289

    Article  CAS  PubMed  Google Scholar 

  • Jacobs J, Kück U (2011) Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 68:737–748

    Article  CAS  Google Scholar 

  • Jeon Y, Jung HJ, Kang H, Park YI, Lee SH, Pai HS (2012) S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana. New Phytol 193:349–363

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kim MK, Kang H (2013) An ABA-regulated putative RNA-binding protein affects seed germination of Arabidopsis under ABA or abiotic stress conditions. J Plant Physiol 170:179–184

    Article  CAS  PubMed  Google Scholar 

  • Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R, Inaba T (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol 151:1339–1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh C-H, Woo Y, Oh SH, Han YS, Kang, H (2008) Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Le T-NN, Kang H (2017) Artificial targeting of a nucleusencoded RNA-binding protein AtRZ1a to chloroplasts affects flowering and ABA response of Arabidopsis thaliana. J Plant Biol 60:278–284

    Article  CAS  Google Scholar 

  • von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, et al. (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    Article  CAS  PubMed  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Kang H (2016) Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol Cells 39:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Lee HJ, Kim DH, Jeon Y, Pai HS, Kang H (2014) A nuclearencoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biol 14:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Navarro J, Manuell AL, Wu J, Mayfield SP (2007) Chloroplast translation regulation. Photosyn Res 94:359–374

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058

    Article  CAS  PubMed  Google Scholar 

  • Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2016) Diversity and evolution of ascorbate peroxidase functions in chloroplasts:more than just a classical antioxidant enzyme? Plant Cell Physiol 57:1377–1386

    CAS  PubMed  Google Scholar 

  • Nawaz G, Kang H (2017) Chloroplast-or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Front Plant Sci 8:871

    Article  PubMed  PubMed Central  Google Scholar 

  • Nickelsen J (2003) Chloroplast RNA-binding proteins. Curr Genet 43:392–399

    Article  CAS  PubMed  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi P, Schneider A, Kleine T, Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606

    Article  CAS  PubMed  Google Scholar 

  • Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Retrograde signaling between plastid and nucleus:J Plant Physiol 181:55–66

    CAS  PubMed  Google Scholar 

  • de Souza A, Wang JZ, Dehesh K (2017) Retrograde signals:Integrators of interorganellar communication and orchestrators of plant development. Annu Rev Plant Biol 68:85–108

    Article  CAS  PubMed  Google Scholar 

  • Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155

    Article  CAS  PubMed  Google Scholar 

  • Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14:S327−S338

    Google Scholar 

  • Terry MJ, Smith AG (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front Plant Sci 4:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez D (1974) Inhibitors of protein synthesis. FEBS Lett 40:S63−S84

    Book  Google Scholar 

  • Wang S, Bai G, Wang S, Yang L, Yang F, Wang Y, Zhu J-K, Hua J (2016) Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in Arabidopsis. PLoS Genet 12:e1006027

    Google Scholar 

  • Woodson JD, Perez-Ruiz JM, Schmitz RJ, Ecker JR, Chory J (2013) Sigma factor-mediated plastid retrograde signals control nuclear gene expression. Plant J 73:1–13

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Sy ND, Lee HJ, Kwak KJ, Gu L, Kim J-I, Kang H (2014) Functional characterization of a chloroplast-targeted RNAbinding protein CRP1 in Arabidopsis thaliana under abiotic stress conditions. J Plant Biol 57:349–356

    Article  CAS  Google Scholar 

  • Yamaguchi K, Prieto S, Beligni MV, Haynes PA, McDonald WH, Yates JR, Mayfield SP (2002) Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome:identification of a novel S1domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5. Plant Cell 14:2957–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu HD, Yang XF, Chen ST, Wang YT, Li JK, Shen, Q, Liu X-L, Guo F-Q (2012) Down-regulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet 8:e1002669

    Google Scholar 

  • Yu QB, Zhao TT, Ye LS, Cheng L, Wu YQ, Huang C, Yang ZN (2018) pTAC10, an S1-domain-containing component of the transcriptionally active chromosome complex, is essential for plastid gene expression in Arabidopsis thaliana and is phosphorylated by chloroplast-targeted casein kinase II. Photosynth Res 137:69–83

    CAS  PubMed  Google Scholar 

  • Zhao C, Lang Z, Zhu J-K (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20:466–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunseung Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, S.N., Park, S.J., Han, J.H. et al. A Chloroplast-targeted S1 RNA-binding Domain Protein Plays a Role in Arabidopsis Response to Diverse Abiotic Stresses. J. Plant Biol. 62, 74–81 (2019). https://doi.org/10.1007/s12374-018-0325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-018-0325-y

Keywords

Navigation