Log in

Existence of Optimal Control for a Class of Kirchhoff–Poisson System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We discuss an optimal control problem for the Kirchhoff–Poisson type controlled system. By using variational methods and embedding theorem, we obtain the existence uniqueness of solutions to the state equation and existence of an optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used to support this study.

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schr\(\ddot{\rm o }\)dinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

    Article  MathSciNet  Google Scholar 

  3. Boumaza, N., Boulaaras, S.: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Methods Appl. Sci. 41, 6050–6069 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bouizem, Y., Boulaaras, S., Djebbar, B.: Some existence results for an elliptic equation of Kirchhoff-type with changing sign data and a logarithmic nonlinearity. Math. Methods Appl. Sci. 42, 2465–2474 (2019)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Fortunato, D.: An eigenvalue problem for the Schr\(\ddot{\rm o }\)dinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  6. Ba, Z., He, X.M.: Solutions for a class of Schr\(\ddot{\rm o }\)dinger–Poisson system in bounded domains. J. Appl. Math. Comput. 51, 287–297 (2016)

    Article  MathSciNet  Google Scholar 

  7. Boulaaras, S.: Existence of positive solutions for a new class of Kirchhoff parabolic systems. Rocky Mountain J. Math. 50, 445–454 (2020)

    Article  MathSciNet  Google Scholar 

  8. Boulaaras, S.: Some existence results for a new class of elliptic Kirchhoff equation with logarithmic source terms. J. Intell. Fuzzy Syst. 37, 8335–8344 (2019)

    Article  Google Scholar 

  9. Batkam, C.J., Junior, J.R.S.: Schr\(\ddot{o}\)dinger–Kirchhoff–Poisson type systems. Commun. Pure Appl. Anal. 15, 429–444 (2016)

    Article  MathSciNet  Google Scholar 

  10. Che, G.F., Chen, H.B.: Infinitely many solutions for Kirchhoff equations with sign-changing potential and Hartree nonlinearity. Mediterr. J. Math. 15, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chai, G.Q., Liu, W.M.: Least energy sign-changing solutions for Kirchhoff–Poisson systems. Bound. Value Probl. 2019, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  12. Chen, S.J., Tang, C.L.: Multiple solutions for nonhomogeneous Schr\(\ddot{\rm o }\)dinger–Maxwell and Klein–Gordon–Maxwell equations on \(\mathbb{R} ^{3}\). NoDEA Nonlinear Differ. Equ. Appl. 17, 559–574 (2010)

    Article  Google Scholar 

  13. Delgado, M., Figueiredo, G.M., Gayte, I., Morales-Rodrigo, C.: An optimal control problem for a Kirchhoff-type equation. ESAIM Control Optim. Calc. Var. 23, 773–790 (2017)

    Article  MathSciNet  Google Scholar 

  14. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)

    Book  Google Scholar 

  15. De, A., José, C., Clemente, R., Ferraz, D.: Existence of infinitely many small solutions for sublinear fractional Kirchhoff–Schrödinger–Poisson systems. Electron. J. Differ. Equ. 2019, 1–16 (2019)

    Google Scholar 

  16. Ruiz, D.: The Schr\(\ddot{\rm o }\)dinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  19. Ghosh, S.: An existence result for singular nonlocal fractional Kirchhoff–Schr\(\ddot{\rm o }\)dinger–Poisson system. Complex Var. Elliptic Equ. 67, 1817–1846 (2022)

    Article  MathSciNet  Google Scholar 

  20. Hansen, V.L.: Fundamental Concepts in Modern Analysis: An Introduction to Nonlinear Analysis, 2nd edn. World Scientific Publishing, Hackensack (2020)

    Google Scholar 

  21. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)

    Article  MathSciNet  Google Scholar 

  22. Joachim, A., Alain, J.: Mathematical Physics of Quantum Mechanics, Lecture Notes in Phys., Berlin, Springer-Verlag (2006)

  23. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  24. Lü, D.F.: Positive solutions for Kirchhoff–Schr\(\ddot{\rm o }\)dinger–Poisson systems with general nonlinearity. Commun. Pure Appl. Anal. 17, 605–626 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liu, X., Sun, Y.J.: Multiple positive solutions for Kirchhoff type problems with singularity. Commun. Pure Appl. Anal. 12, 721–733 (2013)

    MathSciNet  Google Scholar 

  26. Mahto, L., Abbas, S.: Approximate controllability and optimal control of impulsive fractional functional differential equations. J. Abstr. Differ. Equ. Appl. 4, 44–59 (2013)

    MathSciNet  Google Scholar 

  27. Mezouar, N., Boulaaras, S.: Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation. Bull. Malays. Math. Sci. Soc. 43, 725–755 (2020)

    Article  MathSciNet  Google Scholar 

  28. Ma, Y.K., Kavitha, K., Albalawi, W., Shukla, A., Nisar, K.S., Vijayakumar, V.: An analysis on the approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces. Alex. Eng. J. 61, 7291–7302 (2022)

    Article  Google Scholar 

  29. Mohan Raja, M., Vijayakumar, V., Shukla, A., Nisar, K.S., Baskonus, H.M.: On the approximate controllability results for fractional integrodifferential systems of order \(1<r<2\) with sectorial operators. J. Comput. Appl. Math. 415, 1–12 (2022)

    Article  MathSciNet  Google Scholar 

  30. Meng, Y.X., Zhang, X.R., He, X.M.: Least energy sign-changing solutions for a class of fractional Kirchhoff–Poisson system. J. Math. Phys. 62, 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  31. Nguyen, H.T., Nguyen, H.C., Wang, R., Zhou, Y.: Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete Contin. Dyn. Syst. Ser. B 26, 6483–6510 (2021)

    Article  MathSciNet  Google Scholar 

  32. Ruiz, D.: The Schr\(\ddot{\rm o }\)dinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  33. Strauss, W.A.: Partial Differential Equations: An Introduction, 2nd edn. Wiley, Hoboken (2007)

    Google Scholar 

  34. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\), Proceedings of the Conference on Control and its Applications, (2015), 175–180

  35. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control. Math. Rep. 18, 247–259 (2016)

    MathSciNet  Google Scholar 

  36. Wang, Y., Zhang, Z.H.: Ground state solutions for Kirchhoff–Schr\(\ddot{\rm o }\)dinger–Poisson system with sign-changing potentials. Bull. Malays. Math. Sci. Soc. 44, 2319–2333 (2021)

    Article  MathSciNet  Google Scholar 

  37. Xu, L.P., Chen, H.B.: Ground state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth. Adv. Nonlinear Anal. 7, 535–546 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Q.: Existence, uniqueness and multiplicity of positive solutions for Schr\(\ddot{\rm o }\)dinger–Poisson system with singularity. J. Math. Anal. Appl. 437, 160–180 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. provided the concept of the manuscript and wrote the original draft of the paper. W.W. provided proof methods for the manuscript and reviewed and revised the the original draft, as well as funding acquisition. Y.W. and J.L. reviewed and revised the the original draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wei Wei.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Science and Technology Plan Project of Guizhou province (No. Qian Ke He **Tai RenCai-YSZ[2022]002).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wei, W., Wang, Y. et al. Existence of Optimal Control for a Class of Kirchhoff–Poisson System. Qual. Theory Dyn. Syst. 23, 156 (2024). https://doi.org/10.1007/s12346-024-01019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01019-7

Keywords

Mathematics Subject Classification

Navigation