Log in

Global Asymptotic Stability of a Hybrid Differential–Difference System Describing SIR and SIS Epidemic Models with a Protection Phase and a Nonlinear Force of Infection

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study the local and global asymptotic stability of the two steady-states, disease-free and endemic, of hybrid differential–difference SIR and SIS epidemic models with a nonlinear force of infection and a temporary phase of protection against the disease, e.g. by vaccination or medication. The initial model is an age-structured system that is reduced using the method of characteristic lines to a hybrid system, coupled between differential equations and a time continuous difference equation. We first prove that the solutions of the original system can be obtained from the reduced one. We then focus on the reduced system to obtain new results on the asymptotic stability of the two steady-states. We determine the local asymptotic stability of the two steady-states by studying the associated characteristic equation. We then discuss their global asymptotic stability in various situations (SIR, SIS, mass action, nonlinear force of infection), by constructing appropriate Lyapunov functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adimy, M., Chekroun, A., Ferreira, C.P.: Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Math. Biosci. Eng. 17(2), 1329 (2020)

    MathSciNet  Google Scholar 

  2. Adimy, M., Chekroun, A., Kuniya, T.: Global asymptotic stability for a distributed delay differential-difference system of a Kermack-McKendrick SIR model. Appl. Anal. 102, 1–13 (2022)

    MathSciNet  Google Scholar 

  3. Adimy, M., Chekroun, A., Kuniya, T., Meghelli, H.: Global stability of a SEIR discrete delay differential-difference system with protection phase. Math. Methods Appl. Sci. (2023). https://doi.org/10.1002/mma.9533

    Article  MathSciNet  Google Scholar 

  4. Adimy, M., Chekroun, A., Touaoula, T.M.: Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete Contin. Dyn. Syst. Ser. B 20(9), 2765–2791 (2015)

    MathSciNet  Google Scholar 

  5. Adimy, M., Chekroun, A., Touaoula, T.M.: Global asymptotic stability for an age-structured model of hematopoietic stem cell dynamics. Appl. Anal. 96(3), 429–440 (2016)

    MathSciNet  Google Scholar 

  6. Adimy, M., Molina, J., Pujo-Menjouet, L., Ranson, G., Wu, J.: Forecasting the effect of pre-exposure prophylaxis (PrEP) on HIV propagation with a system of differential-difference equations with delay. Mathematics 10(21), 1–24 (2022)

    Google Scholar 

  7. Alexander, M., Bowman, C., Moghadas, S., Summers, R., Gumel, A., Sahai, B.: A vaccination model for transmission dynamics of influenza. SIAM J. Appl. Dyn. Syst. 3(4), 503–524 (2004)

    MathSciNet  Google Scholar 

  8. Allen, L.J., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. 14(10–11), 1127–1147 (2008)

    MathSciNet  Google Scholar 

  9. Anderson, R.M.: Discussion: the Kermack-McKendrick epidemic threshold theorem. Bull. Math. Biol. 53(1), 3–32 (1991)

    Google Scholar 

  10. Beretta, E., Hara, T., Ma, W., Takeuchi, Y.: Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal. 47, 4107–4115 (2001)

    MathSciNet  Google Scholar 

  11. Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002)

    MathSciNet  Google Scholar 

  12. Beretta, E., Takeuchi, Y.: Global stability of an SIR epidemic model with time delays. J. Math. Biol. 33(3), 250–260 (1995)

    MathSciNet  Google Scholar 

  13. Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Mémoires de Mathématique et de Physique, tirés des registres de l’Académie Royale des Sciences, Paris (1766)

  14. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 2nd edn. Springer, New York (2012)

  15. Buonomo, B., d’Onofrio, A., Lacitignola, D.: Global stability of an SIR epidemic model with information dependent vaccination. Math. Biosci. 216(1), 9–16 (2008)

    MathSciNet  Google Scholar 

  16. Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42(1), 43–61 (1978)

    MathSciNet  Google Scholar 

  17. Chekroun, A., Frioui, M.N., Kuniya, T., Touaoula, T.M.: Global stability of an age-structured epidemic model with general Lyapunov functional. Math. Biosci. Eng. 16, 1525–1553 (2019)

    MathSciNet  Google Scholar 

  18. Chekroun, A., Frioui, M.N., Kuniya, T., Touaoula, T.M.: Mathematical analysis of an age structured heroin-cocaine epidemic model. Discrete Contin. Dyn. Syst. B 25(11), 4449–4477 (2020)

    MathSciNet  Google Scholar 

  19. Cooke, K.L., van den Driessche, P.: Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35(2), 240–260 (1996)

    MathSciNet  Google Scholar 

  20. Cruz, M.A., Hale, J.K.: Stability of functional differential equations of neutral type. J. Differ. Equ. 7(2), 334–355 (1970)

    MathSciNet  Google Scholar 

  21. Diekmann, O., Heesterbeek, J.: Mathematical Epidemiology of Infective Diseases: Model Building. Analysis and Interpretation, Wiley, New York (2000)

    Google Scholar 

  22. Duan, X., Yuan, S., Li, X.: Global stability of an SVIR model with age of vaccination. Appl. Math. Comput. 226, 528–540 (2014)

    MathSciNet  Google Scholar 

  23. Enatsu, Y., Nakata, Y., Muroya, Y.: Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete Contin. Dyn. Syst. B 15, 61–74 (2011)

    MathSciNet  Google Scholar 

  24. Enatsu, Y., Nakata, Y., Muroya, Y.: Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model. Nonlinear Anal. Real World Appl. 13, 2120–2133 (2012)

    MathSciNet  Google Scholar 

  25. Feng, X.X., Liu, L.L., Zhang, F.Q.: Dynamical behavior of SEIR-SVS epidemic models with nonlinear incidence and vaccination. Acta Math. Appl. Sin. Engl. Ser. 38(2), 282–303 (2022)

    MathSciNet  Google Scholar 

  26. Gao, S., Chen, L., Nieto, J.J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24(35), 6037–6045 (2006)

    Google Scholar 

  27. Gao, S., Chen, L., Teng, Z.: Pulse vaccination of an SEIR epidemic model with time delay. Nonlinear Anal. Real World Appl. 9(2), 599–607 (2008)

    MathSciNet  Google Scholar 

  28. Hale, J.K., Lunel, SM Verduyn.: Introduction to Functional Differential Equations. Springer, New York (1993)

  29. Hathout, F.Z., Touaoula, T.M., Djilali, S.: Mathematical analysis of a triple age dependent epidemiological model with including a protection strategy. Discrete Contin. Dyn. Syst. B 27(12), 7409–7443 (2022)

    MathSciNet  Google Scholar 

  30. Iannelli, M., Martcheva, M., Li, X.Z.: Strain replacement in an epidemic model with super-infection and perfect vaccination. Math. Biosci. 195(1), 23–46 (2005)

    MathSciNet  Google Scholar 

  31. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115(772), 700–721 (1927)

    Google Scholar 

  32. Khalil, H.K.: Nonlinear systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

  33. Li, M.Y.: An Introduction to Mathematical Modeling of Infectious Diseases. Mathematics of Planet Earth Collection, Springer, Berlin (2018)

    Google Scholar 

  34. Li, M.Y., Shuai, Z., Wang, C.: Global stability of multi-group epidemic models with distributed delays. J. Math. Anal. Appl. 361, 38–47 (2010)

    MathSciNet  Google Scholar 

  35. Li, X.-Z., Wang, J., Ghosh, M.: Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination. Appl. Math. Model. 34(2), 437–450 (2010)

    MathSciNet  Google Scholar 

  36. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and lévy jumps. Nonlinear Anal. Hybrid Syst. 27, 29–43 (2018)

    MathSciNet  Google Scholar 

  37. Liu, X., Takeuchi, Y., Iwami, S.: SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253(1), 1–11 (2008)

    MathSciNet  Google Scholar 

  38. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89(7), 1109–1140 (2010)

    MathSciNet  Google Scholar 

  39. Martcheva, M.: An Introduction to Mathematical Epidemiology, 1st edn. Springer, Berlin (2015)

    Google Scholar 

  40. McCluskey, C.C.: Global stability of an SIR epidemic model with delay and general nonlinear incidence. Math. Biosci. Eng. 7, 837–850 (2010)

    MathSciNet  Google Scholar 

  41. Murray, J.D.: Mathematical Biology: I. An Introduction, 3rd edn. Springer, New York (2002)

  42. Ross, R.: The Prevention of Malaria. John Murray, London (1911)

    Google Scholar 

  43. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

    Google Scholar 

  44. Tipsri, S., Chinviriyasit, W.: The effect of time delay on the dynamics of an SEIR model with nonlinear incidence. Chaos Solitons Fractals 75, 153–172 (2015)

    MathSciNet  Google Scholar 

  45. **ao, Y., Tang, S.: Dynamics of infection with nonlinear incidence in a simple vaccination model. Nonlinear Anal. Real World Appl. 11(5), 4154–4163 (2010)

    MathSciNet  Google Scholar 

  46. Xu, R., Wang, Z., Zhang, F.: Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay. Appl. Math. Comput. 269, 332–342 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

A. Chekroun thanks Grant, PRFU: C00L03UN29012022002, from DGRSDT of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Adimy.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimy, M., Chekroun, A., Dugourd-Camus, C. et al. Global Asymptotic Stability of a Hybrid Differential–Difference System Describing SIR and SIS Epidemic Models with a Protection Phase and a Nonlinear Force of Infection. Qual. Theory Dyn. Syst. 23, 34 (2024). https://doi.org/10.1007/s12346-023-00891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00891-z

Keywords

Mathematics Subject Classification

Navigation