Log in

Caffeine Consumption and Interaction with ADORA2A, CYP1A2 and NOS1 Variants Do Not Influence Age at Onset of Machado-Joseph Disease

  • Research
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Background

The age at onset (AO) of Machado-Joseph disease (SCA3/MJD), a disorder due to an expanded CAG repeat (CAGexp) in ATXN3, is quite variable and the role of environmental factors is still unknown. Caffeine was associated with protective effects against other neurodegenerative diseases, and against SCA3/MJD in transgenic mouse models. We aimed to evaluate whether caffeine consumption and its interaction with variants of caffeine signaling/metabolization genes impact the AO of this disease.

Methods

a questionnaire on caffeine consumption was applied to adult patients and unrelated controls living in Rio Grande do Sul, Brazil. AO and CAGexp were previously determined. SNPs rs5751876 (ADORA2A), rs2298383 (ADORA2A), rs762551 (CYP1A2) and rs478597 (NOS1) were genotyped. AO of subgroups were compared, adjusting the CAGexp to 75 repeats (p < 0.05).

Results

171/179 cases and 98/100 controls consumed caffeine. Cases with high and low caffeine consumption (more or less than 314.5 mg of caffeine/day) had mean (SD) AO of 35.05 (11.44) and 35.43 (10.08) years (p = 0.40). The mean (SD) AO of the subgroups produced by the presence or absence of caffeine-enhancing alleles in ADORA2A (T allele at rs5751876 and rs2298383), CYP1A2 (C allele) and NOS1 (C allele) were all similar (p between 0.069 and 0.516).

Discussion

Caffeine consumption was not related to changes in the AO of SCA3/MJD, either alone or in interaction with protective genotypes at ADORA2A, CYP1A2 and NOS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

The data that support the findings of this study have been deposited in OSF, link https://osf.io/3h6v7/.

References

  1. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8.

    Article  CAS  PubMed  Google Scholar 

  2. Souza GN, Kersting N, Krum-Santos AC, Santos ASP, Furtado GV, Pacheco D, Gonçalves TA, Saute JA, Schuler-Faccini L, Mattos EP, et al. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet. 2016;90:134–40.

    Article  CAS  PubMed  Google Scholar 

  3. de Mattos E, Musskopf M, Leotti V, Saraiva-Pereira M, Jardim LB. Genetic risk factors for modulation of age at onset in Machado-Joseph disease/spinocerebellar ataxia type 3: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2019;90:203–10.

    Article  PubMed  Google Scholar 

  4. Lee YH, Tsai YS, Chang CC, Ho CC, Shih HM, Chen HM, Lai HL, Lee CW, Lee YC, Liao YC, Yang UC, Cheng TH, Chern Y, Soong B. A PIAS1 protective variant S510G delays polyQ Disease Onset by modifying protein homeostasis. Mov Disord. 2022;37:767–77.

    Article  CAS  PubMed  Google Scholar 

  5. Raposo M, Bettencourt C, Melo ARV, Ferreira AF, Alonso I, Silva P, Vasconcelos J, Kay T, Saraiva-Pereira ML, Costa MD, Vilasboas-Campos D, Bettencourt BF, Bruges-Armas J, Houlden H, Heutink P, Jardim LB, Sequeiros J, Maciel P, Lima M, Novel. Machado-Joseph disease-modifying genes and pathways identified by whole-exome sequencing. Neurobiol Dis. 2022;162:105578.

    Article  CAS  PubMed  Google Scholar 

  6. Martins AC, Rieck M, Leotti VB, Saraiva-Pereira ML, Jardim LB. Variants in genes of calpain system as modifiers of Spinocerebellar Ataxia Type 3 phenotype. J Mol Neurosci. 2021;71:1906–13.

    Article  CAS  PubMed  Google Scholar 

  7. Mergener R, Furtado GV, de Mattos EP, et al. Variation in DNA repair system gene as an additional modifier of age at Onset in Spinocerebellar Ataxia Type 3/Machado–Joseph Disease. Neuromol Med. 2020;22:133–8.

    Article  CAS  Google Scholar 

  8. Fiani B, Zhu L, Musch BL, et al. The Neurophysiology of Caffeine as a Central Nervous System Stimulant and the Resultant effects on cognitive function. Cureus. 2021;13(5):e15032.

    PubMed  PubMed Central  Google Scholar 

  9. World Coffee Statistics Database (ICO). International Coffee Organization, accessed 20 January 2024, https://icocoffee.org/what-we-do/world-coffee-statistics-database/.

  10. Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr. 2007;86:240–4.

    Article  CAS  PubMed  Google Scholar 

  11. Fredholm BB, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.

    CAS  PubMed  Google Scholar 

  12. Gonçalves N, Simões AT, Cunha RA, de Almeida LP. Caffeine and adenosine A(2A) receptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado-Joseph disease. Ann Neurol. 2013;73(5):655–66.

    Article  PubMed  Google Scholar 

  13. Gonçalves N, Simões AT, Prediger RD, Hirai H, Cunha RA, Pereira de Almeida L. Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Ann Neurol. 2017;81(3):407–18.

    Article  PubMed  Google Scholar 

  14. Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol. 2007;8:331–48.

    Article  Google Scholar 

  15. Tennent R, Ali A, WhamC, Rutherfurd-Markwick K. Narrative review: impact of genetic variability of CYP1A2, ADORA2A, and AHR on Caffeine Consumption and Response. J Caffeine Adenosine Res. 2020;10:125–34.

    Article  CAS  Google Scholar 

  16. Virgili J, Motitis P, Julal G, Mavrommatis Y, Pilic L. The impact of genetic variability on the relationship between caffeine and cardiometabolic outcomes: a systematic review. Nutr Bull Mar. 2023;48(1):28–42.

    Article  Google Scholar 

  17. Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte IM, et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry. 2012;17:1116–29.

    Article  CAS  PubMed  Google Scholar 

  18. Hancock D, Martin E, Vance J, Scott W. Nitric oxide synthase genes and their interactions with environmental factors in Parkinson’s disease. Neurogenetics. 2008;9:249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poon C, Tsui K, Chau S, Chong P, Lui S, Aquili L, Wong K, Lim L. Functional roles of neuronal nitric oxide synthase in neurodegenerative diseases and Mood disorders. Curr Alzheimer Res. 2021;18:831–40.

    Article  CAS  PubMed  Google Scholar 

  20. Corsetti G, Pasini E, Assanelli D, Bianchi R. Effects of acute caffeine administration on NOS and Bax/Bcl2 expression in the myocardium of rats. Pharmacol Res. 2008;57:19–25.

    Article  CAS  PubMed  Google Scholar 

  21. Kang C, Jayasooriya R, Dilshara M, Choi Y, Jeong Y, Kim N, Kim G. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing akt-mediated NF-κB activation and ERK phosphorylation. Food Chem Toxicol. 2012;50:4270–6.

    Article  CAS  PubMed  Google Scholar 

  22. Altmann V. (2018) Genetic, environmental aspects and their interactions in the susceptibility and pharmacogenetics of Parkinson’s disease. [Doctoral thesis], Universidade Federal do Rio Grande do Sul. https://www.lume.ufrgs.br/handle/10183/180764.

  23. Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A. Caffeine exposure and the risk of Parkinson’s Disease: a systematic review and Meta-analysis of Observational studies. J Alzheimer’s Dis. 2010;20:S221–38.

    Article  CAS  Google Scholar 

  24. Qi H, Li Shixue. Dose–response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int. 2014;14:430–9.

    Article  PubMed  Google Scholar 

  25. Reynoso A, Torricelli R, Jacobs BM, Shi J, Aslibekyan S, Norcliffe-Kaufmann L, Noyce AJ, Heilbron K. Gene-environment interactions for Parkinson’s Disease. Ann Neurol. 2024;95:677–87.

    Article  CAS  PubMed  Google Scholar 

  26. Simonin C, Duru C, Salleron J, Hincker P, Charles P, Delval A, et al. Association between caffeine intake and age at onset in Huntington’s disease. Neurobiol Dis. 2013;58:179–82.

    Article  CAS  PubMed  Google Scholar 

  27. Wang M, Cornelis M, Zhang Z, Liu D, Lian X. Mendelian randomization study of coffee consumption and age at onset of Huntington’s disease. Clin Nutr. 2021;40:5615–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palacios N, Gao X, McCullough M, Schwarzschild M, Shah R, Gapstur S, Ascherio A. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord. 2012;27:1276–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bastos D, Fornari A, Queiroz Y, Soares-Freitas R. The Chlorogenic Acid and Caffeine Content of Yerba Maté (Ilex paraguariensis) beverages. Acta Farm Bonaer. 2005;24:91–5.

    CAS  Google Scholar 

  30. IBM Corp. Released 2011. IBM SPSS statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.

  31. Saaksjarvi K, Knekt P, Rissanen H, et al. Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr. 2008;62:908–15.

    Article  CAS  PubMed  Google Scholar 

  32. Bakshi R, Macklin E, Hung A, et al. Associations of lower caffeine intake and plasma urate levels with idiopathic Parkinson’s disease in the Harvard biomarkers study. J Parkinsons Dis. 2020;10:505–10.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gabbert C, König IR, Lüth T, et al. Coffee, smoking and aspirin are associated with age at onset in idiopathic Parkinson’s disease. J Neurol. 2022;269:4195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dorsey E, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study. Lancet Neurol. 2018;17:939–53.

    Article  Google Scholar 

  35. Hengel H, Martus P, Faber J, Garcia-Moreno H, Solanky N, Giunti P, et al. Characterization of Lifestyle in Spinocerebellar Ataxia Type 3 and Association with Disease Severity. Mov Disord. 2022;37:405–10.

    Article  PubMed  Google Scholar 

  36. Tanner C, Marder K, Eberly S, Biglan K, Oakes D, Shoulson I. Selected health and lifestyle factors, cytosine-adenine-guanine status, and phenoconversion in Huntington’s disease. Mov Disord. 2018;33(3):472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cunha R, Agostinho PM. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis. 2010;20(suppl 1):S95–116.

    Article  CAS  PubMed  Google Scholar 

  38. Gomes C, Kaster M, Tome A, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 2011;1808:1380–99.

    Article  CAS  PubMed  Google Scholar 

  39. Grgic J, Pickering C, Bishop DJ, Del Coso J, Schoenfeld BJ, Tinsley GM, Pedisic Z. ADORA2A C allele carriers exhibit ergogenic responses to Caffeine Supplementation. Nutrients. 2020;12(3):741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rahimi MR, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Łubkowska B, Ahmetov II, Golpasandi H. The ADORA2A TT genotype is Associated with Anti-inflammatory effects of Caffeine in response to Resistance Exercise and Habitual Coffee Intake. Nutrients. 2023;15:1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33:2791–800.

    Article  CAS  PubMed  Google Scholar 

  42. Erblang M, Drogou C, Gomez-Merino D, Metlaine A, Boland A, Deleuze JF, Thomas C, Sauvet F, Chennaoui M. The impact of genetic variations in ADORA2A in the Association between Caffeine Consumption and Sleep. Genes (Basel). 2019;10:1021.

    Article  CAS  PubMed  Google Scholar 

  43. Rogers P, Hohoff C, Heatherley S, Mullings E, Maxfield P, Evershed R, Deckert J, Nutt D. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology. 2010;35:1973–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soukup T, Hloch K, Doseděl M, Tebbens JD, Nekvindová J, Šembera Š, Veleta T, Pávek P, Barvík I. The influence of coffee intake and genetics on adenosine pathway in rheumatoid arthritis. Pharmacogenomics. 2020;21(11):735–49.

    Article  CAS  PubMed  Google Scholar 

  45. Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, Topol B, McGuire V, Costello S, Manthripragada AD, Southwick A, Myers RM, Nelson LM. Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson’s disease. Eur J Neurol. 2011;18:756–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20(5):647–56.

    Article  CAS  PubMed  Google Scholar 

  47. Cornelis M, Kacprowski T, Menni C, Gustafsson S, Pivin E. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 2016;25:5472–82.

    CAS  PubMed  Google Scholar 

  48. Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139:1019–55.

    Article  CAS  PubMed  Google Scholar 

  49. Kapellou A, King A, Graham CAM, Pilic L, Mavrommatis Y. Genetics of caffeine and brain-related outcomes - a systematic review of observational studies and randomized trials. Nutr Rev. 2023;81:1571–98.

    Article  PubMed  Google Scholar 

  50. Fan X, Chen Y, Li W, **a H, Liu B, Guo H, Yang Y, Xu C, **e S, Xu X. Genetic polymorphism of ADORA2A is Associated with the risk of Epilepsy and Predisposition to neurologic comorbidity in Chinese Southern Children. Front Neurosci. 2020;14:590605.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, Altmann V, Schneider Medeiros M, Rieder CR, Hutz MH. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics. 2015;16:573–82.

    Article  CAS  PubMed  Google Scholar 

  52. Santos-Lobato BL, Bortolanza M, Pinheiro LC, Batalhão ME, Pimentel ÂV, Capellari-Carnio E, Del-Bel EA, Tumas V. Levodopa-induced dyskinesias in Parkinson’s disease increase cerebrospinal fluid nitric oxide metabolites’ levels. J Neural Transm (Vienna). 2022;129:55–63.

    Article  CAS  PubMed  Google Scholar 

  53. Schwarzschild MA, Xu K, Oztas E, Petzer JP, Castagnoli K, Castagnoli N Jr, Chen JF. Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson’s disease. Neurology. 2003;61(Suppl 6):S55–61.

    CAS  PubMed  Google Scholar 

  54. Nikrandt G, Mikolajczyk-Stecyna J, Młodzik-Czyżewska M, Chmurzynska A. Functional single-nucleotide polymorphism (rs762551) in CYP1A2 gene affects white coffee intake in healthy 20- to 40-year-old adults. Nutr Res. 2022;105:77–81.

    Article  CAS  PubMed  Google Scholar 

  55. Kim IY, O’Reilly ÉJ, Hughes KC, Gao X, Schwarzschild MA, McCullough ML, Hannan MT, Betensky RA, Ascherio A. Interaction between caffeine and polymorphisms of glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) and cytochrome P450 1A2 (CYP1A2) on Parkinson’s disease risk. Mov Disord. 2018;33:414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salatino-Oliveira A, Wagner F, Akutagava-Martins GC, Bruxel EM, Genro JP, Zeni C, Kieling C, Polanczyk GV, Rohde LA, Hutz MH. MAP1B and NOS1 genes are associated with working memory in youths with attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci. 2016;266:359–66.

    Article  PubMed  Google Scholar 

  57. Salatino-Oliveira A, Akutagava-Martins GC, Bruxel EM, Genro JP, Polanczyk GV, Zeni C, Kieling C, Karam RG, Rovaris DL, Contini V, Cupertino RB, Mota NR, Grevet EH, Bau CH, Rohde LA, Hutz MH. NOS1 and SNAP25 polymorphisms are associated with Attention-Deficit/Hyperactivity disorder symptoms in adults but not in children. J Psychiatr Res. 2016;75:75–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all study participants. This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, grant number 405963/2021-1; and by Financiamento e Incentivo à Pesquisa, Hospital de Clínicas de Porto Alegre (FIPE HCPA) grants numbers 2018-0660 and 2018-0661. ACM, JSP, LS, ERC, DS, LDP, BAA, MLSP and LBJ were supported by CNPq.

Author information

Authors and Affiliations

Authors

Contributions

A.C.M and L.B.J. contributed to the conception and design of the study; A.C.M, J.S.P., L.S., E.R.C., D.F.S., L.D.P., B.A.A., M.L.S.P., and L.B.J. contributed to the acquisition and analysis of data; A.C.M. and L.B.J. contributed to drafting the text and preparing the tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Laura Bannach Jardim.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of interest

The authors have no competing interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.C., Pinheiro, J.d.S., Szinwelski, L. et al. Caffeine Consumption and Interaction with ADORA2A, CYP1A2 and NOS1 Variants Do Not Influence Age at Onset of Machado-Joseph Disease. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01717-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01717-7

Keywords

Navigation