Log in

Mineralogy and geochemistry of clastic sediments of the Terani Formation, Cauvery Basin, southern India: implications for paleoweathering, provenance and tectonic setting

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Mineralogical and geochemical (major, trace and rare earth elements) studies were carried out on the clay samples of the Terani Formation, South India to investigate the paleoweathering, source rocks characteristics and tectonic setting. The chemical index of alteration (CIA), plagioclase index of alteration (PIA) values and A-CN-K diagram indicate that clays were generated from source rocks of the upper continental crust affected by intense chemical weathering. The chondrite-normalized REE patterns show considerable LREE enrichment, HREE depletion with significant negative Eu anomalies. The REE patterns, elemental ratios like Al2O3/TiO2 Cr/Ni, Eu/Eu*, (La/Lu)cn, La/Sc, Th/Sc, La/Co, Th/Co, and Cr/Th, discriminant function diagram, various bivariate and ternary plots indicate the contribution of sediments from felsic and intermediate source rocks. The discriminant-function-based tectonic setting diagrams reveal passive margin setting for the source area of the Terani Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlberg, A., Olsson, I., and Šimkevičius, P., 2003, Triassic-Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden. Sedimentary Geology, 161, 15–29.

    Google Scholar 

  • Anaya-Gregorio, A., Armstrong-Altrin, J.S., Machain-Castillo, M.L., and Montiel-Garcia, P.C., 2018, Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Paleogeography, 7, 253–271.

    Google Scholar 

  • Andersson, P.O.D., Worden, R.H., Hodgson, D.M., and Flint, S., 2004, Provenance evolution and chemostratigraphy of a Palaeozoic submarine fan-complex: Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology, 21, 555–577.

    Google Scholar 

  • Armstrong-Altrin, J.S., 2009, Provenance of sands from Cazones, Acapulco, and Bahia Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas, 26, 764–782.

    Google Scholar 

  • Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., and Ramasamy, S., 2004, Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297.

    Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajan, R., Balaram, V., and Natalhy-Pineda, O., 2015, Petrography and geochemistry of sands from the Chachalacas and Veracruz Beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64, 199–216.

    Google Scholar 

  • Armstrong-Altrin, J.S., Ramos-Vazquez, M.A., Zavala-Leon, A.C., and Montiel-Garcia, P.C., 2018, Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal, 53, 2824–2848.

    Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.I., Balaram, V., Cruz-Martínez, A., and Avila-Ramírez, G., 2013, Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geosciences, 345, 185–202.

    Google Scholar 

  • Assad, F.A., 2009, Field Methods for Petroleum Geologist — A Guide to Computerized Lithostratigraphic Correlation Charts Case Study: Northern Africa. Springer, Berlin, 112 p.

    Google Scholar 

  • Baioumy, H.M. and Ismael, I.S., 2010, Factors controlling the compositional variations among the marine and non-marine black shales from Egypt. International Journal of Coal Geology, 83, 35–45.

    Google Scholar 

  • Bea, F., Pereira, M.D., and Stroh, A., 1994, Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117, 291–312.

    Google Scholar 

  • Bhatia, M.R., 1983, Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W., 1986, Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Google Scholar 

  • Blanford, H.F., 1862, On the Cretaceous and Other Rocks of South Arcot and Trichinopoly Districts. Memoir, Geological Survey of India, 4, 217 p.

  • Brindley, G.W. and Brown, G., 1980, Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society Monograph, Mineralogical Society of London, No. 5, 495 p.

  • Burk, C.A. and Drake, C.L., 1974, The Geology of Continental Margins. Springer, New York, 1009 p.

    Google Scholar 

  • Chamley, H., 1989, Clay Sedimentology. Springer, Berlin, 623 p.

    Google Scholar 

  • Chand, S., Radhakrishna, M., and Subrahmanyam, C., 2001, India-east Antarctica conjugate margins rift-shear tectonic setting inferred from gravity and bathymetry data. Earth and Planetary Science Letters, 185, 225–236.

    Google Scholar 

  • Condie, K.C., 1993, Chemical composition and evolution of upper continental crust. Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.

    Google Scholar 

  • Cullers, R.L., 1994, The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 4955–4972.

    Google Scholar 

  • Cullers, R.L., 1995, The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, USA. Chemical Geology, 123, 107–131.

    Google Scholar 

  • Cullers, R.L., 2000, The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181–203.

    Google Scholar 

  • Cullers, R.L., 2002, Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327.

    Google Scholar 

  • Deconinck, J.F., Amedro, F., Baudin, F., Godet, A., Pellenard, P., Robaszynski, F., and Zimmerlin, I., 2005, Late Cretaceous palaeo-environments expressed by the clay mineralogy of Cenomanian-Campanian chalks from the east of the Paris Basin. Cretaceous Research, 26, 171–179.

    Google Scholar 

  • Dera, G., Pellenard, P., Neige, P., Deconinck, J.F., Pucéat, E., and Dommergues, J.L., 2009, Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 39–51.

    Google Scholar 

  • Dickinson, W.R. and Suczek, C.A., 1979, Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin, 63, 2164–2182.

    Google Scholar 

  • Dostal, J. and Keppie, J.D., 2009, Geochemistry of low-grade clastic rocks in the Acatlán Complex of Southern Mexico: evidence for local provenance in felsic intermediate igneous rocks. Sedimentary Geology, 222, 241–253.

    Google Scholar 

  • Etemad-Saeed, N., Hosseini-Barzi, M., and Armstrong-Altrin, J.S., 2011, Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-ebadam block, Central Iran. Journal of African Earth Sciences, 61, 142–159.

    Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Google Scholar 

  • Feng, R. and Kerrich, R., 1990, Geochemistry of fine-grained clastic sediments in the Archaean Abitibi greenstone belt, Canada, implication for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54, 1061–1081.

    Google Scholar 

  • Galehouse, J.S., 1971, Sedimentation analysis. In: Carver, R.E. (ed.), Procedures in Sedimentary Petrology. Wiley InterScience, New York, p. 69–94.

    Google Scholar 

  • Garcia, D., Fonteilles, M., and Moutte, J., 1994, Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, 411–422.

    Google Scholar 

  • Giles, H.L., Hurley, P.W., and Webster, H.W.M., 1995, Simple approach to the analysis of oxides, silicates, and carbonates using X-ray fluorescence spectrometry. X-ray Spectroscopy, 24, 205–218.

    Google Scholar 

  • Girty, G.H., Ridge, D.L., Knaack, C., Johnson, D., and Al-Riyami, R.K., 1996, Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107–118.

    Google Scholar 

  • Govindaraju, K., 1994, Compilation of working values and descriptions for 383 Geostandards. Geostandards Newsletters, 18, 1–158.

    Google Scholar 

  • Guadagnin, F., Chemale Jr., F., Magalhães, A.J., Santana, A., Dussin, I., and Takehara, L., 2015, Age constraints on crystal-tuff from the Espinhaço Supergroup — Insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the São Francisco Craton. Gondwana Research, 27, 363–376.

    Google Scholar 

  • Herron, M.M., 1988, Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58, 820–829.

    Google Scholar 

  • Jarvis, K.E., 1988, Inductively coupled plasma mass spectrometry: a new technique for the rapid or ultra-trace level determination of the rare earth elements in geological materials. Chemical Geology, 68, 31–39.

    Google Scholar 

  • Jayananda, M., Moyen, J.F., Martin, H., Peucat, J.J., Auvray, B., and Mahabaleswar, B., 2000, Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99, 225–254.

    Google Scholar 

  • Konstantopoulos, P. and Zelilidis, A., 2012, Sedimentation of submarine fan deposits in the Pindos Foreland Basin, from Late Eocene to Early Oligocene, West Peloponnesus Peninsula, SW Greece. Geological Journal, 48, 335–362.

    Google Scholar 

  • Krishnan, M.S., 1982, Geology of India and Burma. New Delhi, CBS, 536 p.

    Google Scholar 

  • López, J.M., Bauluz, B., Fernandéz-Nieto, C., and Yuste, A., 2005, Factors controlling the trace-element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214, 1–19.

    Google Scholar 

  • Madhavaraju, J., 2015, Geochemistry of Late Cretaceious sedimentary rocks in the Cauvery Basin, South India: constraints on paleoweathering, provenance and end Cretaceous environments. In: Ramkumar, M. (ed.), Chemostratigraphy: Concept, Techniques and Applications. Elsevier, p. 185–214.

  • Madhavaraju, J. and Ramasamy, S., 1999, Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu. Journal of Geological Society of India, 54, 291–301.

    Google Scholar 

  • Madhavaraju, J. and Ramasamy, S., 2001, Clay mineral assemblages and rare earth element distribution in the sediments of Ariyalur Group, Tiruchirapalli District, Tamil Nadu — Implication for Paleoclimate. Journal of Geological Society of India, 58, 69–77.

    Google Scholar 

  • Madhavaraju, J. and Lee, Y.I., 2009, Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: implications on provenance and paleo-redox conditions. Revista Mexicana de Ciencias Geologicas, 26, 380–394.

    Google Scholar 

  • Madhavaraju, J. and Lee, Y.I., 2010, Influence of Deccan Volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery Basin, southeastern India: constraints from geochemistry. Current Science, 98, 528–537.

    Google Scholar 

  • Madhavaraju, J., Ramasamy, S., Ruffell, A., and Mohan, S.P., 2002, Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin (southeastern India): implication for sediment source and palaeoclimates at the K/T boundary. Cretaceous Research, 23, 53–163.

    Google Scholar 

  • Madhavaraju, J., Löser, H., Lee, Y.I., Lozano-Santacruz, R., and Pi-Puig, T., 2016b, Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, Mexico: Implications for REE source and paleo-redox conditions. Journal of South American Earth Sciences, 66, 149–165.

    Google Scholar 

  • Madhavaraju, J., Hussain, S.M., Ugeswari, J., Nagarajan, R., Ramasamy, S., and Mahalakshmi, S., 2015, Paleo-redox conditions of the Albian-Danian carbonate rocks of the Cauvery Basin, South India: implications for chemostratigraphy. In: Ramkumar, M. (ed.), Chemostratigraphy: Concept, Techniques and Applications. Elsevier, p. 247–271.

  • Madhavaraju, J., Ramírez-Montoya, E., Monreal, R., González-León, C.M., Pi-Puig, T., Espinoza-Maldonado, I.G., and Grijalva-Noriega, F.J., 2016a, Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: constraints from clay mineralogy and geochemistry. Revista Mexicana de Ciencias Geologicas, 33, 34–48.

    Google Scholar 

  • Madhavaraju, J., Tom, M., Lee, Y.I., Balaram, V., Ramasamy, S., Carranza-Edwards, A., and Ramachandran, A., 2016c, Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico. Journal of South American Earth Sciences, 71, 262–275.

    Google Scholar 

  • Madhavaraju, J., Saucedo-Samaniego, J.C., Loser, H., Espinoza-Maldonado, I.G., Solari, L., Monreal, R., Grijalva-Noriega, F.J., and Jaques-Ayala, C., 2019, Detrital zircon record of Mesozoic volcanic arcs in the Lower Cretaceous Mural Limestone, northwestern Mexico. Geological Journal, 54, 2621–2645. https://doi.org/10.1002/gj.3315

    Google Scholar 

  • Madhavaraju, J., Pacheco-Olivas, S.A., Gonzalez-León, C.M., Espinoza-Maldonado, I.G., Sanchéz-Medrano, P.A., Villanueva-Amadoz, U., Monreal, R., Pi-Puig, T., Ramírez-Montoya, E., and Grijalva-Noriega, F.J., 2017, Mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico. Journal of South American Earth Sciences, 76, 397–411.

    Google Scholar 

  • Mariano, A.N., 1989, Economic geology of rare earth minerals. In: Lipin, B.R. and McKay, G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, 21, p. 309–336.

    Google Scholar 

  • McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influences of provenance and sedimentary processes. In: Lipin, B.R. and McKay, G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, 21, p. 169–200.

    Google Scholar 

  • McLennan, S.M. and Taylor, S.R., 1991, Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.

    Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284, p. 21–40.

  • Mondal, M.E.A., Wani, H., and Mondal, B., 2012, Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India. Tectonophysics, 566, 87–94.

    Google Scholar 

  • Moore, C.M., 1979, Rare-earth Elements and Yttrium: Mineral Commodity Profiles. Bureau of Mines, U.S. Department of the Interior, Washington, D.C., 16 p.

    Google Scholar 

  • Moore, D.M. and Reynolds, R.C., 1989, X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332 p.

    Google Scholar 

  • Nagendra, R. and Reddy, A.N., 2017, Major geologic events of the Cauvery Basin, India and their correlation with global signatures — a review. Journal of Paleogeography, 6, 69–83.

    Google Scholar 

  • Nagendra, R., Kamalakkannan, B.V., Gargi, S., Harry, G., Bakkiaraj, D., Reddy, A.N., and Jaiprakash, B.C., 2011, Sequence surfaces and paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery Basin, India. Marine and Petroleum Geology, 28, 895–905.

    Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutitas. Nature, 299, 715–717.

    Google Scholar 

  • Nesbitt, H.W. and Wilson, R.E., 1992, Recent chemical weathering of basalts. American Journal of Science, 292, 740–777.

    Google Scholar 

  • Nesbitt, H.W., Fedo, C.M., and Young, G.M., 1997, Quartz and feldspar stability, steady and non-steady-state weathering and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105, 173–191.

    Google Scholar 

  • Norrish, K. and Hutton, J.T., 1969, An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta, 33, 431–453.

    Google Scholar 

  • Paranjabe, A.R., Kale, A.S., and Kulkarni, K.G., 2014, Significance of clastic injectites in the syn-rift Terani clay member, Sivaganga Formation, Cauvery Basin, Tamil Nadu, India. Current Science, 106, 1641–1643.

    Google Scholar 

  • Parthasarathy, P., Madhavaraju, J., Ramirez-Montoya, E., and Ramasamy, S., 2020, Geochemistry of estuarine sediments from Marakkanam area, Tamil Nadu, India: source area weathering and provenance implications. Arabian Journal of Geosciences, 13, 157. https://doi.org/10.1007/s12517-019-5008-6

    Google Scholar 

  • Pierce, J.W. and Siegel, F.R., 1969, Quantification in clay mineral studies of sediments and sedimentary rocks. Journal of Sedimentary Research, 39, 187–195.

    Google Scholar 

  • Prabhakar, K.N. and Zutshi, P.L., 1993, Evolution of southern part of Indian east coast basins. Journal of Geological Society of India, 41, 215–230.

    Google Scholar 

  • Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y.I., Rao, S., Chawngthu, D.L., and Velmurugan, K., 2016, Geochemistry of the Proterozoic clastic rocks of Kerur Formation of Kaladgi-Badami Basin, Northern Karnataka, South India: implications for paleoweathering and provenance. Turkish Journal of Earth Sciences, 25, 126–144.

    Google Scholar 

  • Ramasamy, S. and Banerji, R.K., 1991, Geology, petrography and stratigraphy of pre-Ariyalur sequence in Tiruchirapalli District, Tamil Nadu. Journal of Geological Society of India, 37, 577–594.

    Google Scholar 

  • Ramkumar, M., Stuben, D., and Berner, Z., 2011, Barremian-Danian chemostratigraphic sequences of the Cauvery Basin, India: implications on scales of stratigraphic correlation. Gondwana Research, 19, 291–309.

    Google Scholar 

  • Ramos-Vazquez, M.A. and Armstrong-Altrin, J.S., 2019, Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110, 650–657.

    Google Scholar 

  • Ramos-Vazquez, M.A., Armstrong-Altrin, J.S., Machain-Castillo, M.L., and Gio-Argaez, F.R., 2018, Foraminiferal assemblages, 14C ages, and compositional variations in two sediment cores in the western Gulf of Mexico. Journal of South American Earth Sciences, 88, 480–496.

    Google Scholar 

  • Rangaraju, M.K., Agarwal, A., and Prabhakar, K.N., 1993, Tectonostratigraphy, structural style, evolutionary model and hydrocarbon prospects of the Cauvery and Palar basins of India. Proceedings of the 2nd Seminar on Petroliferous Basins of India, vol.1, Dehra Dun, India, Dec. 18–21, p. 371–388.

  • Roser, B.P. and Korsch, R.J., 1986, Determination of tectonic setting of sand-stone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Google Scholar 

  • Ruffell, A.H., McKinley, J.M., and Worden, R.H., 2002, Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transaction of the Royal Society, 360, 675–693.

    Google Scholar 

  • Scotese, C.R., 1997, Paleomap Software. Paleomap Project. http://scotese.com

  • Singh, M., Rajesh, VJ., Kannan, B., and Bhattacharya, S., 2018, Spectral and chemical characterization of gypsum-phyllosilicate association in Tiruchirapalli, South India, and its implications. Geological Journal, 53, 1685–1697.

    Google Scholar 

  • Spalletti, L.A., Limarino, C.O., and Pinol, F.C., 2012, Petrology and geochemistry of Carboniferous siliciclastics from the Argentine Frontal Cordillera: a test of methods for interpreting provenance and tectonic setting. Journal of South American Earth Sciences, 36, 32–54.

    Google Scholar 

  • Srivastava, R.P. and Tewari, B.S., 1967, Biostratigraphy of the Ariyalur Stage, Cretaceous of Trichinopoly. Journal of Palaeontological Society of India, 12, 48–54.

    Google Scholar 

  • Sundaram, R. and Rao, P.S., 1986, Lithostratigraphy of Cretaceous and Palaeocene rocks of Tiruchirapalli District, Tamil Nadu, South India. Record Geological Survey of India, 115, 9–23.

    Google Scholar 

  • Sundaram, R., Henderson, R.A., Ayyasami, K., and Stilwell, J.D., 2001, A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, Southern India. Cretaceous Research, 22, 743–762.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: its Composition and Evolution. Blackwell, Oxford, 312 p.

    Google Scholar 

  • Tewari, A., Hart, M.B., and Watkinson, M.P., 1996, A revised lithostratigraphic classification of the Cretaceous rocks of the Trichinopoly District, Cauvery Basin, South India. Contributions to the XVth Indian Colloquium on Micropalaeontology and Stratigraphy, Dehra Dun, India, p. 789–800.

  • Tijani, M.N., Nton, M.E., and Kitagawa, R., 2010, Textural and geochemical characteristics of the Ajali Sandstone, Anambra Basin, SE Nigeria: implication for its provenance. Comptes Rendus Geosciences, 342, 136–150.

    Google Scholar 

  • Tobia, F.H. and Shangola, S.S., 2016, Minerology, geochemistry, and depositional environment of the Beduh Shale (Lower Triassic), Norther Thrust Zone, Iraq. Turkish Journal of Earth Sciences, 25, 367–391.

    Google Scholar 

  • Velmurugan K., Madhavaraju, J., Balaram, V., Ramachandran, A., Ramasamy, S., Ramirez-Montoya, E., and Saucedo-Samaniego, J.C., 2019, Provenance and tectonic setting of the Proterozoic clastic rocks of the Kerur Formation, Badami Group, Mohare Area, Karnataka, India. In: Mondal, M. (ed.), Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series, Springer, Cham, p. 239–269.

    Google Scholar 

  • Verma, S.P. and Armstrong-Altrin, J.S., 2016, Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.

    Google Scholar 

  • Watkinson, M.P., Hart, M.B., and Joshi, A., 2007, Cretaceous tectonostratigraphy and the development of the Cauvery Basin, Southern India. Petroleum Geoscience, 13, 181–191.

    Google Scholar 

  • Weltje, G.J., 2006, Ternary sandstone composition and provenance: an evaluation of the ‘Dickinson model.’ In: Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V. (eds.), Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Society, London, Special Publications, 264, p. 79–99.

    Google Scholar 

  • Zaid, S.M., 2012, Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66–67, 56–71.

    Google Scholar 

  • Zaid, S.M., 2015, Geochemistry of sandstones from the Pliocene Gabir Formation, North MarsaAlam, Red Sea Egypt: implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102, 1–17.

    Google Scholar 

  • Zaid, S.M., ElBadry, O., Ramadan, F., and Mohamed, M., 2015, Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: implications for provenance and tectonic settings. Turkish Journal of Earth Sciences, 24, 344–364.

    Google Scholar 

  • Zhou, L., Friis, H., and Poulsen, M.L.K., 2015, Geochemical evaluation of the Late Paleocene and Early Eocene shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 61, 111–122.

    Google Scholar 

Download references

Acknowledgments

This work represents part of an MSc thesis completed by the author, R. Subin Prakash. This study was supported by ERNO, Instituto de Geología, Universidad Nacional Autónoma de México through an internal project. We wish to express our gratefulness to Mr. Pablo Peñalor for powdering samples for geochemical study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayagopal Madhavaraju.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavaraju, J., Rajendra, S.P., Lee, Y.I. et al. Mineralogy and geochemistry of clastic sediments of the Terani Formation, Cauvery Basin, southern India: implications for paleoweathering, provenance and tectonic setting. Geosci J 24, 651–667 (2020). https://doi.org/10.1007/s12303-019-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-019-0047-2

Key words

Navigation