Log in

Study of MicroRNA (miR-221-3p, miR-133a-3p, and miR-9-5p) Expressions in Oral Submucous Fibrosis and Squamous Cell Carcinoma

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is one of the common types of cancer. Its progression follows a transition from oral potentially malignant disorders (OPMDs) such as oral submucous fibrosis (OSMF). Epigenetic modifiers, especially microRNAs (miRNAs), have an appreciable role in the regulation of various carcinogenic pathways which are being used as biomarkers. miRNAs may also be helpful in the differentiation of oral submucous fibrosis from oral squamous cell carcinoma. Three miRNAs, miR-221-3p, miR133a-3p, and miR-9-5p, were found differentially expressed in many cancers in the literature search supported by our preliminary database search-based screening. The literature and our functional enrichment analysis in an earlier study have reported these miRNAs to regulate carcinogenesis at various steps. In the present study, the expression of these miRNAs was examined in 34 histopathologically confirmed OSCC, 30 OSMF, and 29 control (healthy volunteers) human samples. There was a significant downregulation of miRNA-133a-3p in OSCC compared to OSMF and controls, whereas there was up-regulation in oral submucous fibrosis compared to controls. There was no significant difference in the expression of miR-221-3p between OSCC and OSMF, but an upregulation in OSCC compared to controls. miR-9-5p was also found upregulated in both OSCC and OSMF. Further, miR-133a-3p expression was negatively correlated with age, smoking, drinking status, and AJCC staging, whereas miR-9-5p expression was only positively associated with tobacco/ areca nut chewing. The ROC plots, logistic regression model generated, and the correlation between the expression of miR-9-5p and miR-133a-3p in blood and tissue suggests that these could be used as risk stratification biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The data are available from the corresponding author on a reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  Google Scholar 

  2. El-Sakka H, Kujan O, Farah CS. Assessing miRNAs profile expression as a risk stratification biomarker in oral potentially malignant disorders: a systematic review. Oral Oncol. 2018;77:57–82.

    Article  CAS  Google Scholar 

  3. Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, Bagan JV, González-Moles M, Kerr AR, et al. Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis. 2020.

  4. Dionne KR, Warnakulasuriya S, Zain RB, Cheong SC. Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory. Int J Cancer. 2015;136(3):503–15.

    CAS  Google Scholar 

  5. Shih Y-H, Wang T-H, Shieh T-M, Tseng Y-H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. Int J Mol Sci [Internet]. 2019 Jun 16 [cited 2020 Jul 22];20(12). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627879/.

  6. Hashibe M. Risk Factors for Cancer of the Mouth: Tobacco, Betel Quid, and Alcohol. In: Warnakulasuriya S, Greenspan JS, editors. Textbook of Oral Cancer: Prevention, Diagnosis and Management [Internet]. Cham: Springer International Publishing; 2020 [cited 2020 Jul 22]. p. 23–30. (Textbooks in Contemporary Dentistry). Available from: https://doi.org/10.1007/978-3-030-32316-5_3.

  7. Saravanan K, Kodanda Ram M, Ganesh R. Molecular biology of oral sub mucous fibrosis. J Cancer Res Ther. 2013;9(2):179–80.

    Article  CAS  Google Scholar 

  8. Garad A, Joshi SB, Naik CS, Ansari A, Mhatre B. ORAL SUB-MUCOUS FIBROSIS. A REVIEW [Internet]. 2018 [cited 2020 Jul 22]. 

  9. Speight PM, Khurram SA, Kujan O. Oral potentially malignant disorders: risk of progression to malignancy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(6):612–27.

    Article  Google Scholar 

  10. Seven M, Karatas OF, Duz MB, Ozen M. The role of miRNAs in cancer: from pathogenesis to therapeutic implications. Future Oncol Lond Engl. 2014;10(6):1027–48.

    Article  CAS  Google Scholar 

  11. Balatti V, Croce CM. MicroRNA dysregulation and multi-targeted therapy for cancer treatment. Adv Biol Regul. 2020;1:75:100669.

    Article  Google Scholar 

  12. Lajer CB, Nielsen FC, Friis-Hansen L, Norrild B, Borup R, Garnæs E, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104(5):830–40.

    Article  CAS  Google Scholar 

  13. Fukumoto I, Hanazawa T, Kinoshita T, Kikkawa N, Koshizuka K, Goto Y, et al. MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways. Br J Cancer. 2015;112(5):891–900.

    Article  CAS  Google Scholar 

  14. Gai C, Camussi F, Broccoletti R, Gambino A, Cabras M, Molinaro L, et al. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer. 2018;18(1):439. https://doi.org/10.1186/s12885-018-4364-z.

    Article  CAS  Google Scholar 

  15. Schneider A, Victoria B, Lopez YN, Suchorska W, Barczak W, Sobecka A, et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci Rep. 2018;8(1):675.

    Article  Google Scholar 

  16. Scapoli L, Palmieri A, Muzio LL, Pezzetti F, Rubini C, Girardi A, et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol. 2010;23(4):1229–34.

    Article  CAS  Google Scholar 

  17. Harrandah AM, Fitzpatrick SG, Smith MH, Wang D, Cohen DM, Chan EKL. MicroRNA-375 as a biomarker for malignant transformation in oral lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016 Dec;122(6):743–52.e1.

    Article  Google Scholar 

  18. Kim H, Yang JM, Ahn S-H, Jeong W-J, Chung J-H, Paik JH. Potential oncogenic role and prognostic implication of microRNA-155-5p in oral squamous cell carcinoma. Anticancer Res. 2018;38(9):5193–200.

  19. B L, J C, X J. [Changes of miRNA after oral submucous fibrosis co-cultured with Salvia and low-dose prednisolone]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39(5):471–6.

  20. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009;18(24):4818–29.

    Article  CAS  Google Scholar 

  21. Chattopadhyay E, Singh R, Ray A, Roy R, De Sarkar N, Paul RR, et al. Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer. Sci Rep. 2016 Sep;6(1):32735. 6(.

    Article  CAS  Google Scholar 

  22. De Sarkar N, Roy R, Mitra JK, Ghose S, Chakraborty A, Paul RR, et al. A quest for miRNA bio-marker: a track back approach from gingivo buccal cancer to two different types of precancers. PLoS ONE. 2014;9(8):e104839.

    Article  Google Scholar 

  23. Yang C-J, Shen WG, Liu C-J, Chen Y-W, Lu H-H, Tsai M-M, et al. miR-221 and miR-222 expression increased the growth and tumorigenesis of oral carcinoma cells: miR-221 and miR-222 in OSCC. J Oral Pathol Med. 2011;40(7):560–6.

    Article  CAS  Google Scholar 

  24. Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, et al. miR-9: From function to therapeutic potential in cancer. J Cell Physiol. 2019.

  25. Kim BG, Gao M-Q, Kang S, Choi YP, Lee JH, Kim JE, et al. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis. 2017;8(3):e2646–e2646.

    Article  CAS  Google Scholar 

  26. Tong F, Mao X, Zhang S, **e H, Yan B, Wang B, et al. HPV + HNSCC-derived exosomal miR-9 induces macrophage M1 polarization and increases tumor radiosensitivity. Cancer Lett. 2020;28:34–44.

    Article  Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  28. Khanna JN, Andrade NN. Oral submucous fibrosis: a new concept in surgical management. Report of 100 cases. Int J Oral Maxillofac Surg. 1995 Dec;24(6):433–9.

    Article  CAS  Google Scholar 

  29. Chang C-C, Yang Y-J, Li Y-J, Chen S-T, Lin B-R, Wu T-S, et al. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol. 2013;49(9):923–31.

    Article  CAS  Google Scholar 

  30. Acharya S, Singh S, Bhatia S. Role of MicroRNA profiling in oral submucous fibrosis pathogenesis and anticarcinogenic action of curcumin in microRNA dysregulation in oral carcinogenesis: a literature update. Indian J Dental Sci. 2019;11:175–9.

    Google Scholar 

  31. Brito JAR, Gomes CC, Guimarães ALS, Campos K, Gomez RS. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med. 2014;43(3):211–6.

    Article  CAS  Google Scholar 

  32. Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. Genomewide study of salivary MicroRNAs for detection of oral cancer. J Dent Res. 2014;93(7_suppl):86S-93S.

  33. Harrandah AM, Fitzpatrick SG, Smith MH, Wang D, Cohen DM, Chan EKL. MicroRNA-375 as a biomarker for malignant transformation in oral lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(6):743-52.e1.

    Article  Google Scholar 

  34. Mazumder S, Datta S, Ray JG, Chaudhuri K, Chatterjee R. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol. 2019;58:137–45.

    Article  Google Scholar 

  35. Yoon AJ, Wang S, Shen J, Robine N, Philipone E, Oster MW, et al. Prognostic value of miR-375 and miR-214-3p in early-stage oral squamous cell carcinoma. Am J Transl Res. 2014;11(5):580–92

    Google Scholar 

  36. Liu X, Zhang A, **ang J, Lv Y, Zhang X. miR-451 acts as a suppressor of angiogenesis in hepatocellular carcinoma by targeting the IL-6R-STAT3 pathway. Oncol Rep. 2016;36(3):1385–92.

    Article  CAS  Google Scholar 

  37. Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, et al. Regulation of KIF2A by antitumor miR-451a inhibits cancer cell aggressiveness features in lung squamous cell carcinoma. Cancers. 2019;11(2):258.

    Article  CAS  Google Scholar 

  38. Koshizuka K, Hanazawa T, Fukumoto I, Kikkawa N, Matsushita R, Mataki H, et al. Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. J Hum Genet. 2017;62(1):113–21.

    Article  CAS  Google Scholar 

  39. Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010;127(12):2804–14.

    Article  CAS  Google Scholar 

  40. Nohata N, Hanazawa T, Enokida H, Seki N. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012;3(1):9–21.

    Article  Google Scholar 

  41. Yang J, Wang H, Xu W, Chen Z. Inhibition of miR-133b indicates poor prognosis and promotes progression of OSCC via SOX4.:10.

  42. Arakeri G, Rai KK, Hunasgi S, Merkx M, a. W, Gao S, Brennan PA. Oral submucous fibrosis: An update on current theories of pathogenesis. J Oral Pathol Med. 2017;46(6):406–12.

  43. Jung JE, Lee JY, Park HR, Kang JW, Kim YH, Lee JH. MicroRNA-133 targets phosphodiesterase 1C in drosophila and human oral cancer cells to regulate epithelial-mesenchymal transition. J Cancer. 2021;12(17):5296–309.

  44. Sharma M, Fonseca FP, Hunter KD, Radhakrishnan R. Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci. 2020;12(1):1–10.

  45. He J, **g Y, Li W, Qian X, Xu Q, Li F-S, et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS ONE. 2013;20(2):e56647.

    Article  Google Scholar 

  46. Ye H, Wang A, Lee B-S, Yu T, Sheng S, Peng T, et al. Proteomic based identification of manganese superoxide dismutase 2 (SOD2) as a metastasis marker for oral squamous cell carcinoma. Cancer Genomics Proteomics. 2008;5(2):85–93.

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The Institutional Ethics committee, AIIMS, Jodhpur, has approved the research. The institutional ethical committee number is AIIMS/IEC/2018/618, and the approval date is 23-08-2018.

Consent for publication

Not applicable

Informed consent

Informed consent was obtained from all the participants after properly describing the procedure through an information sheet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukey, S., Jain, A., Dwivedi, S. et al. Study of MicroRNA (miR-221-3p, miR-133a-3p, and miR-9-5p) Expressions in Oral Submucous Fibrosis and Squamous Cell Carcinoma. Ind J Clin Biochem 38, 73–82 (2023). https://doi.org/10.1007/s12291-022-01035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01035-x

Keywords

Navigation