Log in

JAK2 V617F Mutation in Adult T Cell Leukemia-Lymphoma

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Adult T cell Leukemia/lymphoma (ATL) is a mature T-cell neoplasm that has strong association with the human T-lymphotropic virus type 1 (HTLV-I) infection. This infection is endemic in our region (north eastern Iran). It has been highlighted that Janus Kinase family proteins and specially JAK2 mutations have a pivotal role in the development of many types of hematological malignancies and in particular myeloproliferative neoplasms. So far, the underlying molecular mechanisms leading to the ATL are not well understood. Therefore, in this study it was hypothesized that JAK2 (V617F) mutation may be present in samples from patients with ATL. This case control study was performed in north-eastern Iran. Using polymerase chain reaction, JAK2 (V617F) mutation was performed in 20 DNA samples from ATL patients and 20 HTLV-1 asymptomatic carriers (control group). The results of ATL subjects and the control group were compared by using SPSS software. In the case group 13 (65 %) and 7 patients (35 %) were male and female respectively, with the age range between 40 and 80 years. Only one patients has JAK2 mutation and this mutation was absent in 95 % of ATL patients as well as the HTLV-1 asymptomatic carriers. The results of our study demonstrated that JAK2 V617F mutation is not a common phenomenon in ATL. However, further studies are required to investigate the possible dysregulation of JAK signaling in ATL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stein CK (2011) Applications of cytogenetics in modern pathology. In: McPherson RA, Pincus MR (eds) Henry’ clinical diagnosis and management by laboratory methods, 22nd edn. Elsevier Saunders, Pennsylvania, pp 1305–1429

    Google Scholar 

  2. Ioachim HL, Medeiros LJ (2008) Ioachim’s lymph node pathology, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Hlela C, Shepperd S, Khumalo NP, Taylor GP (2009) The prevalence of human T-cell lymphotropic virus type 1 in the general population is unknown. AIDS Rev 11(4):205–214

    PubMed  Google Scholar 

  4. Itoyama T, Chaganti RS, Yamada Y, Tsukasaki K, Atogami S, Nakamura H et al (2001) Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood 97(11):3612–3620

    Article  CAS  PubMed  Google Scholar 

  5. Kamada N, Sakurai M, Miyamoto K, Sanada I, Sadamori N, Fukuhara S et al (1992) Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res 52(6):1481–1493

    CAS  PubMed  Google Scholar 

  6. Mao X, Lillington DM, Czepulkowski B, Young BD, Russell-Jones R, Whittaker S (2001) A case of adult T-cell leukaemia/lymphoma characterized by multiplex-fluorescence in situ hybridization, comparative genomic hybridization, fluorescence in situ hybridization and cytogenetics. Br J Dermatol 145(1):117–122

    Article  CAS  PubMed  Google Scholar 

  7. Keramati MR, Sadeghian MH, Ayatollahi H (2010) Clinical and laboratory features in adult T-cell leukemia/lymphoma in Khorasan, Iran. Leuk Lymphoma 51(4):727–729

    Article  PubMed  Google Scholar 

  8. Rafatpanah H, Hedayati-Moghaddam MR, Fathimoghadam F, Bidkhori HR, Shamsian SK, Ahmadi S et al (2011) High prevalence of HTLV-I infection in Mashhad, Northeast Iran: a population-based seroepidemiology survey. J Clin Virol 52(3):172–176

    Article  PubMed  Google Scholar 

  9. Frederick JS, Kumar V, Abbas AK, Fausto N et al (2010) Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier Saunders, Pennsylvania

    Google Scholar 

  10. Ratner L (2011) JAK blockade and HTLV. Blood 117(6):1771–1772

    Article  CAS  PubMed  Google Scholar 

  11. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, Villeval JL, Constantinescu SN, Casadevall N, Vainchenker W (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148

    Article  CAS  PubMed  Google Scholar 

  12. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR (2012) Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 19(8):754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campregher PV, Santos FP, Perini GF, Hamerschlak N (2012) Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter 34(2):150–155

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ha JS, Kim YK, Jung SI, Jung HR, Chung IS (2012) Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms. Ann Lab Med. 32(6):385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790

    Article  CAS  PubMed  Google Scholar 

  16. Muramatsu H, Makishima H, Maciejewski JP (2012) Chronic myelomonocytic leukemia and atypical chronic myeloid leukemia: novel pathogenetic lesions. Semin Oncol 39(1):67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Provan D, Gribben JG (2010) Molecular hematology, 3rd edn. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  18. Quintás-Cardama A, Verstovsek S (2013) Molecular pathways: JAK/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res 19(8):1933–1940

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kchour G, Tarhini M, Kooshyar MM, El Hajj H, Wattel E, Mahmoudi M et al (2009) Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 113(26):6528–6532

    Article  CAS  PubMed  Google Scholar 

  20. Mahieux R (2011) Virological aspects of HTLV-1 infection and new therapeutical concepts. Bull Soc Pathol Exot 104(3):181–187

    Article  CAS  PubMed  Google Scholar 

  21. Vannucchi AM, Pancrazzi A, Bogani C, Antonioli E, Guglielmelli P (2006) A quantitative assay for JAK2 V617F mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia 20(6):1055–1060

    Article  CAS  PubMed  Google Scholar 

  22. Pezeshkpoor F, Jafarian AH, Ghazvini K, Yazdanpanah MJ, Sadeghian A, Esmaili H, Karrabi M, Rohani F, Joushan B (2012) An association of human papillomaviruses low risk and high risk subtypes with skin tag. Iran J Basic Med Sci. 15(3):840–844

    PubMed  PubMed Central  Google Scholar 

  23. Sadeghian MH, Ayatollahi H, Keramati MR, Memar B, Jamedar SA, Avval MM, Sheikhi M, Shaghayegh G (2011) The association of Epstein-Barr virus infection with multiple myeloma. Indian J Pathol Microbiol 54(4):720–724

    PubMed  Google Scholar 

  24. Sadeghian MH, Mohammadnia-Aval M, Ayatollahi H, Keramati MR, Memar B, Jamedar SA, Sheikhi M, Shaghayegh G (2013) Is there any relationship between human herpesvirus-8 and multiple Myeloma? Lymphoma. doi:10.1155/2013/123297

  25. Nayereh KG, Khadem G (2012) Preventive and therapeutic vaccines against human papillomaviruses associated cervical cancers. Iran J Basic Med Sci. 15(1):585–601

    PubMed  PubMed Central  Google Scholar 

  26. Hall WW, Fujii M (2005) Deregulation of cell-signaling pathways in HTLV-1 infection. Oncogene 24(39):5965–5975

    Article  CAS  PubMed  Google Scholar 

  27. Sadeghian MH, Keramati MR, Ayatollahi H, Feizabadi AS, Tehranaian F, Shakibyee H (2012) Is there any relationship between expressions of minor blood group antigens with HTLV-I infection? Transfus Apher Sci. 47(2):151–154

    Article  PubMed  Google Scholar 

  28. Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA et al (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 106(23):9414–9418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kameda T, Shide K, Shimoda HK, Hidaka T, Kubuki Y, Katayose K et al (2010) Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma. Int J Hematol 92(2):320–325

    Article  CAS  PubMed  Google Scholar 

  30. Tomita M, Kawakami H, Uchihara JN, Okudaira T, Masuda M, Matsuda T et al (2011) Retraction: inhibition of constitutively active Jak-Stat pathway suppresses cell growth of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Retrovirology 6(8):1

    Article  Google Scholar 

  31. Ehrentraut S, Nagel S, Scherr ME, Schneider B, Quentmeier H, Geffers R et al (2013) t(8;9)(p22;p24)/PCM1-JAK2 activates SOCS2 and SOCS3 via STAT5. PLoS ONE 8(1):e53767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC et al (2011) SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia 25(11):1751–1759

    Article  CAS  PubMed  Google Scholar 

  33. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Percy MJ, McMullin MF (2005) The V617F JAK2 mutation and the myeloproliferative disorders. Hematol Oncol 23(3–4):91–93

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Ikezoe T, Nishioka C, Furihata M, Yokoyama A (2010) AZ960, a novel JAK2 inhibitor, induces growth arrest and apoptosis in adult T-cell leukemia cells. Mol Cancer Ther 9(12):3386–3395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was the result of a MD student thesis and financially supported by the research vice chancellor of Mashhad University of Medical Sciences. The authors would like to thank them and also Dr. Mohammad Khajeh Daluei for the Statistical advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Sadeghian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayatollahi, H., Sadeghian, M.H., Keramati, M.R. et al. JAK2 V617F Mutation in Adult T Cell Leukemia-Lymphoma. Indian J Hematol Blood Transfus 32, 437–441 (2016). https://doi.org/10.1007/s12288-015-0620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-015-0620-4

Keywords

Navigation