Log in

Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The disruption of the human gut microbiota has been linked to host health conditions, including various diseases. However, no reliable index for measuring and predicting a healthy microbiome is currently available. Here, the sequencing data of 1,663 Koreans were obtained from three independent studies. Furthermore, we pooled 3,490 samples from public databases and analyzed a total of 5,153 fecal samples. First, we analyzed Korean gut microbiome covariates to determine the influence of lifestyle on variation in the gut microbiota. Next, patterns of microbiota variations across geographical locations and disease statuses were confirmed using a global cohort and di-sease data. Based on comprehensive comparative analysis, we were able to define three enterotypes among Korean cohorts, namely, Prevotella type, Bacteroides type, and outlier type. By a thorough categorization of dysbiosis and the evaluation of microbial characteristics using multiple datasets, we identified a wide spectrum of accuracy levels in classifying health and disease states. Using the observed microbiome patterns, we devised an index named the gut microbiome index (GMI) that could consistently predict health conditions from human gut microbiome data. Compared to ecological metrics, the microbial marker index, and machine learning approaches, GMI distinguished between healthy and non-healthy individuals with a higher accuracy across various datasets. Thus, this study proposes a potential index to measure health status of gut microbiome that is verified from multiethnic data of various diseases, and we expect this model to facilitate further clinical application of gut microbiota data in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Allaband, C., McDonald, D., Vázquez-Baeza, Y., Minich, J.J., Tripathi, A., Brenner, D.A., Loomba, R., Smarr, L., Sandborn, W.J., Schnabl, B., et al. 2019. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin. Gastroenterol. Hepatol. 17, 218–230.

    Article  PubMed  Google Scholar 

  • Anderson, C.J., Koester, L.R., and Schmitz-Esser, S. 2021. Rumen epithelial communities share a core bacterial microbiota: a meta-analysis of 16S rRNA gene Illumina MiSeq sequencing datasets. Front. Microbiol. 12, 625400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.M., et al. 2011. Enterotypes of the human gut microbiome. Nature 473, 174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäckhed, F., Fraser, C.M., Ringel, Y., Sanders, M.E., Sartor, R.B., Sherman, P.M., Versalovic, J., Young, V., and Finlay, B.B. 2012. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12, 611–622.

    Article  PubMed  CAS  Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48.

    Article  Google Scholar 

  • Baxter, N.T., Koumpouras, C.C., Rogers, M.A., Ruffin, M.T. 4th, and Schloss, P.D. 2016. DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model. Microbiome 4, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett, E., Peters, S.A.E., and Woodward, M. 2018. Sex differences in macronutrient intake and adherence to dietary recommendations: findings from the UK Biobank. BMJ Open 8, e020017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nik-kïla, J., Monti, D., Satokari, R., Franceschi, C., et al. 2010. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolnick, D.I., Snowberg, L.K., Hirsch, P.E., Lauber, C.L., Org, E., Parks, B., Lusis, A.J., Knight, R., Caporaso, J.G., and Svanbäck, R. 2014. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500.

    Article  CAS  PubMed  Google Scholar 

  • Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo-Lominchar, M.G., Maté-Muñoz, J.L., Domínguez, R., Moreno, D., and Larrosa, M. 2017. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 12, e0171352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broussard, J.L. and Devkota, S. 2016. The changing microbial landscape of Western society: diet, dwellings and discordance. Mol. Metab. 5, 737–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunkwall, L. and Orho-Melander, M. 2017. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60, 943–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cáceres, M.D. and Legendre, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574.

    Article  PubMed  Google Scholar 

  • Chang, J.Y., Antonopoulos, D.A., Kalra, A., Tonelli, A., Khalife, W.T., Schmidt, T.M., and Young, V.B. 2008. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 197, 435–438.

    Article  PubMed  Google Scholar 

  • Clemente, J.C., Pehrsson, E.C., Blaser, M.J., Sandhu, K., Gao, Z., Wang, B., Magris, M., Hidalgo, G., Contreras, M., Noya-Alarcón, O., et al. 2015. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563.

    Article  CAS  PubMed  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. 2010. Impact of diet in sha** gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Cuesta-Zuluaga, J., Kelley, S.T., Chen, Y., Escobar, J.S., Mueller, N.T., Ley, R.E., McDonald, D., Huang, S., Swafford, A.D., Knight, R., et al. 2019. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems 4, e00261–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930.

    Article  Google Scholar 

  • Dufrêne, M. and Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366.

    Google Scholar 

  • Duvallet, C., Gibbons, S.M., Gurry, T., Irizarry, R.A., and Alm, E.J. 2017. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., Kurilshikov, A., Bonder, M.J., Valles-Colomer, M., Vande-putte, D., et al. 2016. Population-level analysis of gut microbiome variation. Science 352, 560–564.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y. and Pedersen, O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71.

    Article  CAS  PubMed  Google Scholar 

  • Frank, D.N., St. Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzosa, E.A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X.C., and Huttenhower, C. 2015. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13, 360–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagliardi, A., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F., and Schippa, S. 2018. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health 15, 1679.

    Article  PubMed Central  CAS  Google Scholar 

  • Gevers, D., Kugathasan, S., Denson, L.A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S.J., Yassour, M., et al. 2014. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons, S.M., Duvallet, C., and Alm, E.J. 2018. Correcting for batch effects in case-control microbiome studies. PLoS Comput. Biol. 14, e1006102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J.T., et al. 2014. Human genetics shape the gut microbiome. Cell 159, 789–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorvitovskaia, A., Holmes, S.P., and Huse, S.M. 2016. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grąt, M., Wronka, K.M., Krasnodębski, M., Masior, Ł., Lewandowski, Z., Kosińska, I., Grąt, K., Stypułkowski, J., Rejowski, S., Wasilewicz, M., et al. 2016. Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis. Transplant. Proc. 48, 1687–1691.

    Article  PubMed  Google Scholar 

  • Haiser, H.J., Gootenberg, D.B., Chatman, K., Sirasani, G., Balskus, E.P., and Turnbaugh, P.J. 2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Wu, W., Zheng, H.M., Li, P., McDonald, D., Sheng, H.F., Chen, M.X., Chen, Z.H., Ji, G.Y., Zheng, Z.D.X., et al. 2018. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  • Henao-Mejia, J., Elinav, E., **, C., Hao, L., Mehal, W.Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C., Jurczak, M.J., et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmstrøm, K., Collins, M.D., Møller, T., Falsen, E., and Lawson, P.A. 2004. Subdoligranulum variabile gen. nov., sp. nov. from human feces. Anaerobe 10, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Hoyles, L., Fernández-Real, J.M., Federici, M., Serino, M., Abbott, J., Charpentier, J., Heymes, C., Luque, J.L., Anthony, E., Barton, R.H., et al. 2018. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, M.A., Verdi, S., Maxan, M.E., Shin, C.M., Zierer, J., Bowyer, R.C.E., Martin, T., Williams, F.M.K., Menni, C., Bell, J.T., et al. 2018. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jochum, L. and Stecher, B. 2020. Label or concept — what is a pathobiont? Trends Microbiol. 28, 789–792.

    Article  CAS  PubMed  Google Scholar 

  • Kang, M., Joung, H., Lim, J.H., Lee, Y.S., and Song, Y.J. 2011. Secular trend in dietary patterns in a Korean adult population, using the 1998, 2001, and 2005 Korean national health and nutrition examination survey. Korean J. Nutr. 44, 152–161.

    Article  Google Scholar 

  • Kim, D.K., Park, J., Han, D., Yang, J., Kim, A., Woo, J., Kim, Y., and Mook-Jung, I. 2018. Molecular and functional signatures in a novel Alzheimer’s disease mouse model assessed by quantitative proteomics. Mol. Neurodegener. 13, 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knight, R., Callewaert, C., Marotz, C., Hyde, E.R., Debelius, J.W., McDonald, D., and Sogin, M.L. 2017. The microbiome and human biology. Annu. Rev. Genomics Hum. Genet. 18, 65–86.

    Article  CAS  PubMed  Google Scholar 

  • Kostic, A.D., Chun, E., Robertson, L., Glickman, J.N., Gallini, C.A., Michaud, M., Clancy, T.E., Chung, D.C., Lochhead, P., Hold, G.L., et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, H.J., Lim, J.H., Kang, D., Lim, S., Park, S.J., and Kim, J.H. 2019. Is stool frequency associated with the richness and community composition of gut microbiota? Intest. Res. 17, 419–426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.M., Kennedy, S., et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.H., Yoon, S.H., Jung, Y., Kim, N., Min, U., Chun, J., and Choi, I. 2020. Emotional well-being and gut microbiome profiles by enterotype. Sci. Rep. 10, 20736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, C., Tseng, H.C., Chen, H.M., Wang, W.C., Chiu, C.M., Chang, J.Y., Lu, K.Y., Weng, S.L., Chang, T.H., Chang, C.H., et al. 2017. Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics 18, 932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linando, A.Y. and Lee, S.K. 2018. Socioeconomic, dietary, nutrition, body weight and epidemiologic transitions: three nations at different stage of development. Progr. Nutr. 20, 602–615.

    Google Scholar 

  • Liu, C.H., Abrams, N.D., Carrick, D.M., Chander, P., Dwyer, J., Hamlet, M.R.J., Macchiarini, F., PrabhuDas, M., Shen, G.L., Tandon, P., et al. 2017. Biomarkers of chronic inflammation in disease development and prevention: challenges and opportunities. Nat. Immunol. 18, 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Li, J., Wu, F., Zheng, H., Peng, Q., and Zhou, H. 2019. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl. Psychiatry 9, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N., Schirmer, M., Avila-Pacheco, J., Poon, T.W., Andrews, E., Ajami, N.J., Bonham, K.S., Brislawn, C.J., et al. 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis, P. and Flint, H.J. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., Brochado, A.R., Fernandez, K.C., Dose, H., Mori, H., et al. 2018. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makki, K., Deehan, E.C., Walter, J., and Bäckhed, F. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715.

    Article  CAS  PubMed  Google Scholar 

  • Mancabelli, L., Milani, C., Lugli, G.A., Turroni, F., Ferrario, C., van Sinderen, D., and Ventura, M. 2017. Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ. Microbiol. 19, 1379–1390.

    Article  PubMed  Google Scholar 

  • Manor, O., Dai, C.L., Kornilov, S.A., Smith, B., Price, N.D., Lovejoy, J.C., Gibbons, S.M., and Magis, A.T. 2020. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez, I., Stegen, J.C., Maldonado-Gómez, M.X., Eren, A.M., Siba, P.M., Greenhill, A.R., and Walter, J. 2015. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, B.H. and Anderson, M.J. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297.

    Article  Google Scholar 

  • Morgan, X.C., Tickle, T.L., Sokol, H., Gevers, D., Devaney, K.L., Ward, D.V., Reyes, J.A., Shah, S.A., LeLeiko, N., Snapper, S.B., et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., **ao, J.Z., Abe, F., and Osawa, R. 2016. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oki, K., Toyama, M., Banno, T., Chonan, O., Benno, Y., and Watanabe, K. 2016. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol. 16, 284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen, I. and Yilmaz, O. 2019. Possible role of Porphyromonas gingivalis in orodigestive cancers. J. Oral Microbiol. 11, 1563410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., Glickman, J.N., Siebert, R., Baron, R.M., Kasper, D.L., et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Org, E., Mehrabian, M., Parks, B.W., Shipkova, P., Liu, X., Drake, T.A., and Lusis, A.J. 2016. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N., and Hermoso, M.A. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. 2019. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, C. and Round, J.L. 2014. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozuelo, M., Panda, S., Santiago, A., Mendez, S., Accarino, A., Santos, J., Guarner, F., Azpiroz, F., and Manichanh, C. 2015. Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome. Sci. Rep. 5, 12693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryde, S.E., Duncan, S.H., Hold, G.L., Stewart, C.S., and Flint, H.J. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Quigley, E.M.M. and Spiller, R.C. 2016. Constipation and the microbiome: lumen versus mucosa! Gastroenterology 150, 300–303.

    Article  PubMed  Google Scholar 

  • Rampelli, S., Schnorr, S.L., Consolandi, C., Turroni, S., Severgnini, M., Peano, C., Brigidi, P., Crittenden, A.N., Henry, A.G., and Candela, M. 2015. Metagenome sequencing of the Hadza huntergatherer gut microbiota. Curr. Biol. 25, 1682–1693.

    Article  CAS  PubMed  Google Scholar 

  • Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W., Lombard, V., Henrissat, B., Bain, J.R., et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M.A.M. and Aronoff, D.M. 2016. The influence of nonsteroidal anti-inflammatory drugs on the gut microbiome. Clin. Microbiol. Infect. 22, 178.e1–178.e9.

    Article  CAS  Google Scholar 

  • Rosero, J.A., Killer, J., Sechovcová, H., Mrázek, J., Benada, O., Fliegerová, K., Havlík, J., and Kopečný, J. 2016. Reclassification of Eubacterium rectale (Hauduroy et al. 1937) Prévot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. Int. J. Syst. Evol. Microbiol. 66, 768–773.

    Article  CAS  PubMed  Google Scholar 

  • Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Alcoholado, L., Ramos-Molina, B., Otero, A., Laborda-Illanes, A., Ordóñez, R., Medina, J.A., Gómez-Millán, J., and Queipo-Ortuño, M.I. 2020. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers 12, 1406.

    Article  PubMed Central  CAS  Google Scholar 

  • Schirmer, M., Smeekens, S.P., Vlamakis, H., Jaeger, M., Oosting, M., Franzosa, E.A., Horst, R.T., Jansen, T., Jacobs, L., Bonder, M.J., et al. 2016. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1122–1136.

    Article  CAS  Google Scholar 

  • Seekatz, A.M., Rao, K., Santhosh, K., and Young, V.B. 2016. Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection. Genome Med. 8, 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seong, G., Kim, N., Joung, J.G., Kim, E.R., Chang, D.K., Chun, J., Hong, S.N., and Kim, Y.H. 2020. Changes in the intestinal microbiota of patients with inflammatory bowel disease with clinical remission during an 8-week infliximab infusion cycle. Microorganisms 8, 874.

    Article  CAS  PubMed Central  Google Scholar 

  • Shalapour, S., Lin, X.J., Bastian, I.N., Brain, J., Burt, A.D., Aksenov, A.A., Vrbanac, A.F., Li, W., Perkins, A., Matsutani, T., et al. 2017. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits, S.A., Leach, J., Sonnenburg, E.D., Gonzalez, C.G., Lichtman, J.S., Reid, G., Knight, R., Manjurano, A., Changalucha, J., Elias, J.E., et al. 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, J., Lee, Y., and Park, K. 2019. Effects of processed red meat consumption on the risk of type 2 diabetes and cardiovascular diseases among Korean adults: the Korean Genome and Epidemiology Study. Eur. J. Nutr. 58, 2477–2484.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg, E.D. and Sonnenburg, J.L. 2014. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg, J.L. and Sonnenburg, E.D. 2019. Vulnerability of the industrialized microbiota. Science 366, eaaw9255.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., **e, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., **a, J., Chen, B., et al. 2018. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, R. and Shimodaira, H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542.

    Article  CAS  PubMed  Google Scholar 

  • Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., Tsuchiya, S., Dohi, O., Yoshida, N., Kamada, K., et al. 2019. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J. Gastroenterol. 54, 53–63.

    Article  PubMed  Google Scholar 

  • Takahashi, K., Nishida, A., Fujimoto, T., Fujii, M., Shioya, M., Imaeda, H., Inatomi, O., Bamba, S., Sugimoto, M., and Andoh, A. 2016. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W.H.W. and Hazen, S.L. 2014. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tigchelaar, E.F., Bonder, M.J., Jankipersadsing, S.A., Fu, J., Wijmenga, C., and Zhernakova, A. 2016. Gut microbiota composition associated with stool consistency. Gut 65, 540–542.

    Article  CAS  PubMed  Google Scholar 

  • Tilg, H., Cani, P.D., and Mayer, E.A. 2016. Gut microbiome and liver diseases. Gut 65, 2035–2044.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, A., Debelius, J., Brenner, D.A., Karin, M., Loomba, R., Schnabl, B., and Knight, R. 2018. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truong, D.T., Tett, A., Pasolli, E., Huttenhower, C., and Segata, N. 2017. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature 457, 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • Van den Abbeele, P., Belzer, C., Goossens, M., Kleerebezem, M., De Vos, W.M., Thas, O., De Weirdt, R., Kerckhof, F.M., and Van de Wiele, T. 2013. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 7, 949–961.

    Article  CAS  PubMed  Google Scholar 

  • van der Walt, A.J., van Goethem, M.W., Ramond, J.B., Makhalanyane, T.P., Reva, O., and Cowan, D.A. 2017. Assembling metagenomes, one community at a time. BMC Genomics 18, 521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandeputte, D., Falony, G., Vieira-Silva, S., Tito, R.Y., Joossens, M., and Raes, J. 2016. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Vangay, P., Johnson, A.J., Ward, T.L., Al-Ghalith, G.A., Shields-Cutler, R.R., Hillmann, B.M., Lucas, S.K., Beura, L.K., Thompson, E.A., Till, L.M., et al. 2018. US immigration westernizes the human gut microbiome. Cell 175, 962–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vital, M., Karch, A., Pieper, D.H., and Shade, A. 2017. Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2, e00130–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Allen, T.D., May, R.J., Lightfoot, S., Houchen, C.W., and Huycke, M.M. 2008. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res. 68, 9909–9917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, H.D., Shin, A., and Kim, J. 2014. Dietary patterns of Korean adults and the prevalence of metabolic syndrome: a cross-sectional study. PLoS ONE 9, e111593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **a, G.H., You, C., Gao, X.X., Zeng, X.L., Zhu, J.J., Xu, K.Y., Tan, C.H., Xu, R.T., Wu, Q.H., Zhou, H.W., et al. 2019. Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front. Neurol. 10, 397.

    Article  PubMed  PubMed Central  Google Scholar 

  • **e, G., Wang, X., Zhao, A., Yan, J., Chen, W., Jiang, R., Ji, J., Huang, F., Zhang, Y., Lei, S., et al. 2017. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci. Rep. 7, 45232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., et al. 2012. Human gut microbiome viewed across age and geography. Nature 486, 222–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Chen, C., Cui, J., Lu, J., Yan, C., Wei, X., Zhao, X., Li, N., Li, S., Xue, G., et al. 2019. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld, J.R., McMinds, R., and Vega Thurber, R. 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121.

    Article  CAS  PubMed  Google Scholar 

  • Zeller, G., Tap, J., Voigt, A.Y., Sunagawa, S., Kultima, J.R., Costea, P.I., Amiot, A., Böhm, J., Brunetti, F., Habermann, N., et al. 2014. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, J., Guo, Z., Lim, A.A.Q., Zheng, Y., Koh, E.Y., Ho, D., Qiao, J., Huo, D., Hou, Q., Huang, W., et al. 2014. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci. Rep. 4, 5001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhernakova, A., Kurilshikov, A., Bonder, M.J., Tigchelaar, E.F., Schirmer, M., Vatanen, T., Mujagic, Z., Vila, A.V., Falony, G., Vieira-Silva, S., et al. 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Liu, W., Alkhouri, R., Baker, R.D., Bard, J.E., Quigley, E.M., and Baker, S.S. 2014. Structural changes in the gut microbiome of constipated patients. Physiol. Genomics 46, 679–686.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., and Goodman, A.L. 2019. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by ChunLab, Inc., and received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsik Chun.

Ethics declarations

Conflict of Interest All other authors are employees of ChunLab, Inc.

Ethical Statements The study was conducted according to the guidelines of the Declaration of Helsinki and the research protocol was approved by Institutional Review Boards (IRB). The studies were approved by the Public Institutional Bioethics Committee designated by the MOHW (IRB:P01-201804-31-004, P01-201905-11-004), the Institutional Review Board of Samsung Medical Center (IRB:2016-06-040), and the Institutional Review Board of Myong Ji Hospital (IRB:2018-08-020).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, HS., Min, U., Jang, H. et al. Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets. J Microbiol. 60, 533–549 (2022). https://doi.org/10.1007/s12275-022-1526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1526-0

Keywords

Navigation