Log in

Inhibitory effects of piceatannol on human cytomegalovirus (hCMV) in vitro

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (hCMV) is a ubiquitous herpesvirus, which results in the establishment of a latent infection that persists throughout the life of the host and can be reactivated when the immunity is low. Currently, there is no vaccine for hCMV infection, and the licensed antiviral drugs mainly target the viral enzymes and have obvious adverse reactions. Thus, it is important to search for compounds with anti-hCMV properties. The present study aimed to investigate the suppressive effects of piceatannol on hCMV Towne strain infection and the putative underlying mechanisms using human diploid fibroblast WI-38 cells. Piceatannol supplementation prevented the lytic changes induced by hCMV infection in WI-38 cells. Furthermore, piceatannol suppressed the expression of hCMV immediate-early (IE) and early (E) proteins as well as the replication of hCMV DNA in a dose-dependent manner. Moreover, hCMV-induced cellular senescence was suppressed by piceatannol, as shown by a decline in the senescence-associated β-galactosidase (SA-β-Gal) activity and decreased production of intracellular reactive oxygen species (ROS). p16INK4a, a major senescence-associated molecule, was dramatically elevated by current hCMV infection that was attenuated by pre-incubation with piceatannol in a dose-dependent manner. These results demonstrated that piceatannol suppressed the hCMV infection via inhibition of the activation of p16INK4a and cellular senescence induced by hCMV. Together, these findings indicate piceatannol as a novel and potent anti-hCMV agent with the potential to be developed as an effective treatment for chronic hCMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderholm, K.M., Bierle, C.J., and Schleiss, M.R. 2016. Cytomegalovirus vaccines: current status and future prospects. Drugs76, 1625–1645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ariza-Heredia, E.J., Nesher, L., and Chemaly, R.F. 2014. Cytomegalovirus diseases after hematopoietic stem cell transplantation: A mini-review. Cancer Lett.342, 1–8.

    CAS  PubMed  Google Scholar 

  • Aubert, M., Chen, Z., Lang, R., Dang, C.H., Fowler, C., Sloan, D.D., and Jerome, K.R. 2008. The antiapoptotic herpes simplex virus glycoprotein J localizes to multiple cellular organelles and induces reactive oxygen species formation. J. Virol.82, 617–629.

    CAS  PubMed  Google Scholar 

  • Auerbach, M., Yan, D., Fouts, A., Xu, M., Estevez, A., Austin, C.D., Bazan, F., and Feierbach, B. 2013. Characterization of the guinea pig CMV gH/gL/GP129/GP131/GP133 complex in infection and spread. Virology441, 75–84.

    CAS  PubMed  Google Scholar 

  • Berk, T., Gordon, S.J., Choi, H.Y., and Cooper, H.S. 1985. Cytomegalovirus infection of the colon: a possible role in exacerbations of inflammatory bowel disease. Am. J. Gastroenterol.80, 355–360.

    CAS  PubMed  Google Scholar 

  • Biron, K.K. 2006. Antiviral drugs for cytomegalovirus diseases. Antiviral Res.71, 154–163.

    CAS  PubMed  Google Scholar 

  • Botto, S., Abraham, J., Mizuno, N., Pryke, K., Gall, B., Landais, I., Streblow, D.N., Fruh, K.J., and DeFilippis, V.R. 2019. Human cytomegalovirus immediate early 86-kDa protein blocks transcription and induces degradation of the immature interleukin-1β protein during virion-mediated activation of the AIM2 inflammasome. mBio10, e02510–18.

    PubMed  PubMed Central  Google Scholar 

  • Burgdorf, S.W., Clark, C.L., Burgdorf, J.R., and Spector, D.H. 2011. Mutation of glutamine to arginine at position 548 of IE2 86 in human cytomegalovirus leads to decreased expression of IE2 40, IE2 60, UL83, and UL84 and increased transcription of US8-9 and US29-32. J. Virol.85, 11098–11110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campos, A.B., Ribeiro, J., Boutolleau, D., and Sousa, H. 2016. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev. Med. Virol.26, 161–182.

    PubMed  Google Scholar 

  • Cannon, M.J., Schmid, D.S., and Hyde, T.B. 2010. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol.20, 202–213.

    PubMed  Google Scholar 

  • Castagnola, E., Cappelli, B., Erba, D., Rabagliati, A., Lanino, E., and Dini, G. 2004. Cytomegalovirus infection after bone marrow transplantation in children. Hum. Immunol.65, 416–422.

    PubMed  Google Scholar 

  • Evers, D.L., Wang, X., Huong, S.M., Huang, D.Y., and Huang, E.S. 2004. 3,4′,5-Trihydroxy-trans-stilbene (resveratrol) inhibits human cytomegalovirus replication and virus-induced cellular signaling. Antiviral Res.63, 85–95.

    CAS  PubMed  Google Scholar 

  • Finkel, T. and Holbrook, N.J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature408, 239–247.

    CAS  PubMed  Google Scholar 

  • Gao, L., Qian, S., Zeng, L., Wang, R., Wei, G., Fan, J., and Zheng, S. 2007. An animal model of human cytomegalovirus infection. Transplant. Proc.39, 3438–3443.

    CAS  PubMed  Google Scholar 

  • Gerna, G. and Lilleri, D. 2019. Human cytomegalovirus (HCMV) infection/re-infection: development of a protective HCMV vaccine. New Microbiol.42, 1–20.

    CAS  PubMed  Google Scholar 

  • Gnanandarajah, J.S., Gillis, P.A., Hernandez-Alvarado, N., Higgins, L., Markowski, T.W., Sung, H., Lumley, S., and Schleiss, M.R. 2014. Identification by mass spectrometry and immune response analysis of guinea pig cytomegalovirus (GPCMV) pentameric complex proteins GP129, 131 and 133. Viruses6, 727–751.

    PubMed  PubMed Central  Google Scholar 

  • Grosse, S.D., Ross, D.S., and Dollard, S.C. 2008. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J. Clin. Virol.41, 57–62.

    PubMed  Google Scholar 

  • Hansen, S.G., Strelow, L.I., Franchi, D.C., Anders, D.G., and Wong, S.W. 2003. Complete sequence and genomic analysis of rhesus cytomegalovirus. J. Virol.77, 6620–6636.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, E.S. 1975. Human cytomegalovirus. III. Virus-induced DNA polymerase. J. Virol.16, 298–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, E.S. 1975. Human cytomegalovirus. IV. Specific inhibition of virus-induced DNA polymerase activity and viral DNA replication by phosphonoacetic acid. J. Virol.16, 1560–1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde, T.B., Schmid, D.S., and Cannon, M.J. 2010. Cytomegalovirus seroconversion rates and risk factors: implications for congenital CMV. Rev. Med. Virol.20, 311–326.

    PubMed  Google Scholar 

  • Kalejta, R.F. and Shenk, T. 2002. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci.7, d295–306.

    CAS  PubMed  Google Scholar 

  • Kanai, K., Yamada, S., Yamamoto, Y., Fukui, Y., Kurane, I., and Inoue, N. 2011. Re-evaluation of the genome sequence of guinea pig cytomegalovirus. J. Gen. Virol.92, 1005–1020.

    CAS  PubMed  Google Scholar 

  • Kawakami, S., Kinoshita, Y., Maruki-Uchida, H., Yanae, K., Sai, M., and Ito, T. 2014. Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients6, 4794–4804.

    PubMed  PubMed Central  Google Scholar 

  • Kinoshita, Y., Kawakami, S., Yanae, K., Sano, S., Uchida, H., Inagaki, H., and Ito, T. 2013. Effect of long-term piceatannol treatment on eNOS levels in cultured endothelial cells. Biochem. Biophys. Res. Commun.430, 1164–1168.

    CAS  PubMed  Google Scholar 

  • Kitada, M., Ogura, Y., Maruki-Uchida, H., Sai, M., Suzuki, T., Kanasaki, K., Hara, Y., Seto, H., Kuroshima, Y., Monno, I., et al. 2017. The effect of piceatannol from passion fruit (Passiflora edulis) seeds on metabolic health in humans. Nutrients9, 1142.

    PubMed Central  Google Scholar 

  • Leng, S.X., Qu, T., Semba, R.D., Li, H.F., Yao, X., Nilles, T., Yang, X., Manwani, B., Walston, J.D., Ferrucci, L.,et al. 2011. Relationship between cytomegalovirus (CMV) IgG serology, detectable CMV DNA in peripheral monocytes, and CMV pp65495-503-specific CD8+ T cells in older adults. Age33, 607–614.

    PubMed  PubMed Central  Google Scholar 

  • Li, H.F., Mao, G.X., Carlson, J., and Leng, S.X. 2015. A novel flow cytometry-based tool for determining the efficiency of human cytomegalovirus infection in THP-1 derived macrophages. J. Virol. Methods221, 127–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ljungman, P., Deliliers, G.L., Platzbecker, U., Matthes-Martin, S., Bacigalupo, A., Einsele, H., Ullmann, J., Musso, M., Trenschel, R., Ribaud, P.,et al. 2001. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The infectious diseases working party of the european group for blood and marrow transplantation. Blood97, 388–392.

    CAS  PubMed  Google Scholar 

  • Mao, G., Li, H., Ding, X., Meng, X., Wang, G., and Leng, S.X. 2016. Suppressive effects of sirtinol on human cytomegalovirus (hCMV) infection and hCMV-induced activation of molecular mechanisms of senescence and production of reactive oxygen species. Mech. Ageing Dev.158, 62–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, G.X., Wang, Y., Qiu, Q.A., Deng, H.B., Yuan, L.G., Li, R.G., Song, D.Q., Li, Y.Y., Li, D.D., and Wang, Z. 2010. Salidroside protects human fibroblast cells from premature senescence induced by H2O2 partly through modulating oxidative status. Mech. Ageing Dev.131, 723–731.

    CAS  PubMed  Google Scholar 

  • Mar, E.C., Cheng, Y.C., and Huang, E.S. 1983. Effect of 9-(1,3-dihydroxy- 2-propoxymethyl)guanine on human cytomegalovirus replication in vitro. Antimicrob. Agents Chemother.24, 518–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mar, E.C., Chiou, J.F., Cheng, Y.C., and Huang, E.S. 1985. Inhibition of cellular DNA polymerase α and human cytomegalovirusinduced DNA polymerase by the triphosphates of 9-(2-hydroxyethoxymethyl) guanine and 9-(1,3-dihydroxy-2-propoxymethyl)- guanine. J. Virol.53, 776–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruki-Uchida, H., Kurita, I., Sugiyama, K., Sai, M., Maeda, K., and Ito, T. 2013. The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biol. Pharm. Bull.36, 845–849.

    CAS  PubMed  Google Scholar 

  • Matsui, Y., Sugiyama, K., Kamei, M., Takahashi, T., Suzuki, T., Katagata, Y., and Ito, T. 2010. Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J. Agric. Food Chem.58, 11112–11118.

    CAS  PubMed  Google Scholar 

  • McGuire, K.A., Barlan, A.U., Griffin, T.M., and Wiethoff, C.M. 2011. Adenovirus type 5 rupture of lysosomes leads to cathepsin Bdependent mitochondrial stress and production of reactive oxygen species. J. Virol. 85, 10806–10813.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercorelli, B., Luganini, A., Palu, G., Gribaudo, G., and Loregian, A. 2019. Drug repurposing campaigns for human cytomegalo virus identify a natural compound targeting the Immediate-Early 2 (IE2) protein: a comment on “The natural flavonoid compound deguelin inhibits HCMV lytic replication within fibroblasts”. Viruses11, 117.

    CAS  PubMed Central  Google Scholar 

  • Noris, E., Zannetti, C., Demurtas, A., Sinclair, J., De Andrea, M., Gariglio, M., and Landolfo, S. 2002. Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J. Virol.76, 12135–12148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nukui, M., O’ Connor, C.M., and Murphy, E.A. 2018. The natural flavonoid compound deguelin inhibits HCMV lytic replication within fibroblasts. Viruses10, 614.

    CAS  PubMed Central  Google Scholar 

  • O’Brien, S., Ravandi, F., Riehl, T., Wierda, W., Huang, X., Tarrand, J., O’Neal, B., Kantarjian, H., and Keating, M. 2008. Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Blood111, 1816–1819.

    PubMed  Google Scholar 

  • Rolland, M., Li, X., Sellier, Y., Martin, H., Perez-Berezo, T., Rauwel, B., Benchoua, A., Bessieres, B., Aziza, J., Cenac, N.,et al. 2016. PPARγ is activated during congenital cytomegalovirus infection and inhibits neuronogenesis from human neural stem cells. PLoS Pathog.12, e1005547.

    PubMed  PubMed Central  Google Scholar 

  • Sano, S., Sugiyama, K., Ito, T., Katano, Y., and Ishihata, A. 2011. Identification of the strong vasorelaxing substance scirpusin B, a dimer of piceatannol, from passion fruit (Passiflora edulis) seeds. J. Agric. Food Chem.59, 6209–6213.

    CAS  PubMed  Google Scholar 

  • Seyed, M.A., Jantan, I., Bukhari, S.N., and Vijayaraghavan, K. 2016. A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J. Agric. Food Chem.64, 725–737.

    CAS  PubMed  Google Scholar 

  • Speir, E., Modali, R., Huang, E.S., Leon, M.B., Shawl, F., Finkel, T., and Epstein, S.E. 1994. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science265, 391–394.

    CAS  PubMed  Google Scholar 

  • Stern-Ginossar, N., Weisburd, B., Michalski, A., Le, V.T., Hein, M.Y., Huang, S.X., Ma, M., Shen, B., Qian, S.B., Hengel, H.,et al. 2012. Decoding human cytomegalovirus. Science338, 1088–1093.

    CAS  PubMed  Google Scholar 

  • Surh, Y.J. and Na, H.K. 2016. Therapeutic potential and molecular targets of piceatannol in chronic diseases. Adv. Exp. Med. Biol.928, 185–211.

    CAS  PubMed  Google Scholar 

  • Tilton, C., Clip**er, A.J., Maguire, T., and Alwine, J.C. 2011. Human cytomegalovirus induces multiple means to combat reactive oxygen species. J. Virol.85, 12585–12593.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toussaint, O., Medrano, E.E., and von Zglinicki, T. 2000. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp. Gerontol.35, 927–945.

    CAS  PubMed  Google Scholar 

  • Tung, W.H., Hsieh, H.L., Lee, I.T., and Yang, C.M. 2011. Enterovirus 71 induces integrin β1/EGFR-Rac1-dependent oxidative stress in SK-N-SH cells: role of HO-1/CO in viral replication. J. Cell. Physiol.226, 3316–3329.

    CAS  PubMed  Google Scholar 

  • **ao, J., Deng, J., Lv, L., Kang, Q., Ma, P., Yan, F., Song, X., Gao, B., Zhang, Y., and Xu, J. 2015. Hydrogen peroxide induce human cytomegalovirus replication through the activation of p38-MAPK signaling pathway. Viruses7, 2816–2833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Li, S., Zhang, X., Pang, X., Lin, Q., and Cao, J. 2015. Resveratrol, sirtuins, and viruses. Rev. Med. Virol.25, 431–445.

    CAS  PubMed  Google Scholar 

  • Zannetti, C., Mondini, M., De Andrea, M., Caposio, P., Hara, E., Peters, G., Gribaudo, G., Gariglio, M., and Landolfo, S. 2006. The expression of p161INK4a tumor suppressor is upregulated by human cytomegalovirus infection and required for optimal viral replication. Virology349, 79–86.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81771520), funds from the Technology Department of Zhejiang Province (2016C34002), Zhejiang Provincial Natural Science Foundation (LQ20H250002), Chinese traditional medicine science and technology projects of Zhejiang Province (2018ZA004, 2018ZB002, and 2019- ZB005), the Health Bureau of Zhejiang Province (2019RC091 and 2020KY387), and Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University (Grant No. HUZUL201904). Dr. Genxiang Mao is an Irma and Paul Milstein Program for Senior Health fellow supported by the MILSTEIN MEDICAL ASIAN AMERICAN Partnership Foundation (MMAAP Foundation) (http://www.mmaapf.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **g Yan or Gen-**ang Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SY., Zhang, J., Xu, XG. et al. Inhibitory effects of piceatannol on human cytomegalovirus (hCMV) in vitro. J Microbiol. 58, 716–723 (2020). https://doi.org/10.1007/s12275-020-9528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9528-2

Keywords

Navigation