Log in

Bacterial diversity in ornithogenic soils compared to mineral soils on King George Island, Antarctica

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the Narębski Point area of King George Island of Antarctica, ornithogenic soils form on land under Chinstrap and Gentoo Penguin rookeries. The purpose of this study was to compare the bacterial community compositions in the gradient of contamination by penguin feces; mineral soil with no contamination, and soils with medium or high contamination. The discrimination between mineral soils and ornithogenic soils by characterization of physicochemical properties and bacterial communities was notable. Physicochemical analyses of soil properties showed enrichment of carbon and nitrogen in ornithogenic soils. Firmicutes were present abundantly in active ornithogenic soils, Bacteroidetes and Proteobacteria in a formerly active one, and several diverse phyla such as Proteobacteria, Actinobacteria, and Acidobacteria in mineral soils. Some predominant species belonging to the Firmicutes and Gammaproteobacteria may play an important role for the mineralization of nutrients in ornithogenic soils. Results of this study indicate that dominant species may play an important role in mineralization of nutrients in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aislabie, J., Jordan, S., Ayton, J., Klassen, J.L., Barker, G.M., and Turner, S. 2009. Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can. J. Microbiol.55, 21–36.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, J.E., Virginia, R.A., Parsons, A.N., and Wall, D.H. 2006. Soil carbon turnover in the McMurdo Dry Valleys, Antarctica. Soil Biol. Biochem.38, 3065–3082.

    Article  CAS  Google Scholar 

  • Bowman, J.P., Joanne, C., Austin, J.J., and Sanderson, K. 1996. Novel Psychrobacter species from Antarctic ornighogenic soils. Int. J. Syst. Evol. Microbiol.46, 841–848.

    CAS  Google Scholar 

  • Cary, S.C., McDonald, I.R., Barrett, J.E., and Cowan, D.A. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol.8, 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200.

    Article  PubMed  CAS  Google Scholar 

  • Gihring, T.M., Green, S.J., and Schadt, C.W. 2012. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ. Microbiol.14, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • González, I., Déjean, S., Martin, P.G.P., and Baccini, A. 2008. CCA: An R package to extend canonical correlation analysis. J. Stat. Softw.23, 1–14.

    Google Scholar 

  • Gupta, P., Reddy, G.S., Delille, D., and Shivaji, S. 2004. Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int. J. Syst. Evol. Microbiol.54, 2375–2378.

    CAS  Google Scholar 

  • Kim, O.-S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., andet al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol.62, 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.-H., Yi, H., Jeon, Y.-S., Won, S., and Chun, J. 2012. TBC: A clustering algorithm based on prokaryotic taxonomy. J. Microbiol.50, 181–185.

    Article  PubMed  Google Scholar 

  • Lu, J., Domingo, J.W.S., Lamendella, R., Edge, T., and Hill, S. 2008. Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl. Environ. Microbiol.74, 3969–3976.

    Article  PubMed  CAS  Google Scholar 

  • Na, H., Kim, O.-S., Yoon, S.-H., Kim, Y., and Chun, J. 2011. Comparative approach to capture bacterial diversity of coastal waters. J. Microbiol.49, 729–740.

    Article  PubMed  Google Scholar 

  • Niederberger, T.D., McDonald, I.R., Hacker, A.L., Soo, R.M., Barrett, J.E., Wall, D.H., and Cary, S.C. 2008. Microbial community composition in soils of norther Victoria Land, Antarctica. Environ. Microbiol.10, 1713–1724.

    Article  PubMed  CAS  Google Scholar 

  • Oh, J., Kim, B.K., Cho, W.-S., Hong, S.G., and Kim, K.M. 2012. PyroTrimmer: a software with GUI for pre-processing 454 amplicon sequences. J. Microbiol.50, 766–769.

    Article  PubMed  CAS  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., andet al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541.

    Article  PubMed  CAS  Google Scholar 

  • Scupham, A.J. 2007. Examination of the microbial ecology of the avian intestine in vivo using bromodeoxyuridine. Environ. Microbiol.9, 1801–1809.

    Article  PubMed  CAS  Google Scholar 

  • Simas, F., Schaefer, C., Melo, V.F., Albuquerque-Filho, M.R., Michel, R., Pereira, V., Gomes, M., and Costa, L. 2007. Ornithogenic cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma138, 191–203.

    Article  CAS  Google Scholar 

  • Smith, J.L., Barrett, J.E., Tusnády, G., Rejtö, L., and Cary, S.C. 2010. Resolving environmental drivers of microbial community structure in Antarctic soils. Antarctic Science22, 673–680.

    Article  Google Scholar 

  • Sun, L., Zhu, R., Zie, Z., and ** deposition. Atmos. Environ.36, 4977–4982.

    Article  CAS  Google Scholar 

  • Ugolini, F.C. 1970. Antarctic soils and their ecology. Academic Press, London.

    Google Scholar 

  • Zdanowski, M.K., Zmuda, M.J., and Zwolska, I. 2005. Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol. Biochem.37, 581–595.

    Article  CAS  Google Scholar 

  • Zhu, R., Liu, Y., Ma, E., Sun, J., Xu, H., and Sun, L. 2009. Nutrient compositions and potential greenhouse gas production in penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica. Antarctic Science21, 427–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ok-Sun Kim.

Additional information

Supplemental material for this article may be found at http://www.springer.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, OS., Chae, N., Lim, H.S. et al. Bacterial diversity in ornithogenic soils compared to mineral soils on King George Island, Antarctica. J Microbiol. 50, 1081–1085 (2012). https://doi.org/10.1007/s12275-012-2655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2655-7

Keywords