Log in

Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Past work in recently deglaciated soils demonstrates that microbial communities undergo shifts prior to plant colonization. To date, most studies have focused on relatively ‘long’ chronosequences with the ability to sample plant-free sites over at least 50 years of development. However, some recently deglaciated soils feature rapid plant colonization and questions remain about the relative rate of change in the microbial community in the unvegetated soils of these chronosequences. Thus, we investigated the forelands of the Mendenhall Glacier near Juneau, AK, USA, where plants rapidly establish. We collected unvegetated samples representing soils that had been ice-free for 0, 1, 4, and 8 years. Total nitrogen (N) ranged from 0.00∼0.14 mg/g soil, soil organic carbon pools ranged from 0.6∼2.3 mg/g soil, and both decreased in concentration between the 0 and 4 yr soils. Biologically available phosphorus (P) and pH underwent similar dynamics. However, both pH and available P increased in the 8 yr soils. Nitrogen fixation was nearly undetectable in the most recently exposed soils, and increased in the 8 yr soils to ∼5 ng N fixed/cm2/h, a trend that was matched by the activity of the soil N-cycling enzymes urease and β-l,4-N-acetyl-glucosa-minidase. 16S rRNA gene clone libraries revealed no significant differences between the 0 and 8 yr soils; however, 8 yr soils featured the presence of cyanobacteria, a division wholly absent from the 0 yr soils. Taken together, our results suggest that microbes are consuming allochtonous organic matter sources in the most recently exposed soils. Once this carbon source is depleted, a competitive advantage may be ceded to microbes not reliant on in situ nutrient sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, E.B. and R. Burt. 1996. Soil development on moraines of Mendenhall Glacier, southeast Alaska.1. The moraines and soil morphology. Geoderma 72, 1–17.

    Article  Google Scholar 

  • Allison, V.J., L.M. Condron, D.A. Peltzer, S.J. Richardson, and B.L. Turner. 2007. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 39, 1770–1781.

    Article  CAS  Google Scholar 

  • Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  • Ashelford, K.E., N.A. Chuzhanova, J.C. Fry, A.J. Jones, and A.J. Weightman. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72, 5734–5741.

    Article  CAS  PubMed  Google Scholar 

  • Bardgett, R.D., A. Richter, R. Bol, M.H. Garnett, R. Baumler, X.L. Xu, E. Lopez-Capel, D.A.C. Manning, P.J. Hobbs, I.R. Hartley, and W. Wanek. 2007. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. UK 3, 487–490.

    Article  Google Scholar 

  • Belnap, J. 1996. Soil surface disturbances in cold deserts: Effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol. Fert. Soils 23, 362–367.

    Article  CAS  Google Scholar 

  • Bergman, B., J.R. Gallon, A.N. Rai, and L.J. Stal. 1997. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19, 139–185.

    Article  CAS  Google Scholar 

  • Burt, R. and E.B. Alexander. 1996. Soil development on moraines of Mendenhall Glacier, southeast Alaska.2. Chemical transformations and soil micromorphology. Geoderma 72, 19–36.

    Article  CAS  Google Scholar 

  • Chapin, F.S., L.R. Walker, C.L. Fastie, and L.C. Sharman. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175.

    Article  Google Scholar 

  • Chin, C.C. and G. Gorin. 1966. Urease.7. Some observations on assay method of Sumner. Anal. Biochem. 17, 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, C.C. and D. Liptzin. 2007. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252.

    Article  Google Scholar 

  • Crocker, R.L. and B.A. Dickson. 1957. Soil development on the recessional moraines of the Herbert and Mendenhall Glaciers, Southeastern Alaska. J. Ecol. 45, 169–185.

    Article  Google Scholar 

  • Cross, A.F. and W.H. Schlesinger. 1995. A literature review and evaluation of the Hedley Fractionation — Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64, 197–214.

    Article  CAS  Google Scholar 

  • Deiglmayr, K., L. Philippot, D. Tscherko, and E. Kandeler. 2006. Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ. Microbiol. 8, 1600–1612.

    Article  CAS  PubMed  Google Scholar 

  • Del Moral, R., J.H. Titus, and A.M. Cook. 1995. Early primary succession on Mount St-Helens, Washington, USA. J. Veg. Sci. 6, 107–120.

    Article  Google Scholar 

  • DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

    Article  CAS  PubMed  Google Scholar 

  • Duc, L., M. Noll, B.E. Meier, H. Burgmann, and J. Zeyer. 2009. High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb. Ecol. 57, 179–190.

    Article  PubMed  Google Scholar 

  • Hammerli, A., S. Waldhuber, C. Miniaci, J. Zeyer, and M. Bunge. 2007. Local expansion and selection of soil bacteria in a glacier forefield. Eur. J. Soil Sci. 58, 1437–1445.

    Article  CAS  Google Scholar 

  • Hardy, R.W.F., R.D. Holsten, E.K. Jackson, and R.C. Burns. 1968. Acetylene-ethylene assay for N2 fixation — laboratory and field evaluation. Plant Physiol. 43, 1185–1207.

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson, I.D., S.J. Coulson, J. Harrison, and N.R. Webb. 2001. What a wonderful web they weave: spiders, nutrient capture and early ecosystem development in the high Arctic — some counter-intuitive ideas on community assembly. Oikos 95, 349–352.

    Article  Google Scholar 

  • Hodkinson, I.D., N.R. Webb, and S.J. Coulson. 2002. Primary community assembly on land — the missing stages: why are the heterotrophic organisms always there first? J. Ecol. 90, 569–577.

    Article  Google Scholar 

  • Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M.L.M., A. Sowerby, D.L. Williams, and R.E. Jones. 2008. Factors controlling soil development in sand dunes: evidence from a coastal dune soil chronosequence. Plant Soil 307, 219–234.

    Article  CAS  Google Scholar 

  • Kandeler, E., K. Deiglmayr, D. Tscherko, D. Bru, and L. Philippot. 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957–5962.

    Article  CAS  PubMed  Google Scholar 

  • Kastovska, K., J. Elster, M. Stibal, and H. Santruckova. 2005. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb. Ecol. 50, 396–407.

    Article  PubMed  Google Scholar 

  • King, A.J., A.F. Meyer, and S.K. Schmidt. 2008. High levels of microbial biomass and activity in unvegetated tropical and temperate alpine soils. Soil Biol. Biochem. 40, 2605–2610.

    Article  CAS  Google Scholar 

  • Krebs, C.J. 2001. Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco, USA.

    Google Scholar 

  • Kuo, S. 1996. Phosphorus, p. 869–919. In D.L. Sparks (ed.), Methods of Soil Analysis. Soil Science Society of America, Inc., Madison, Wisconsin, USA.

    Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA Sequencing, p. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd, West Sussex, USA.

    Google Scholar 

  • Ley, R.E., M. Hamady, C. Lozupone, P.J. Turnbaugh, R.R. Ramey, J.S. Bircher, M.L. Schlegel, T.A. Tucker, M.D. Schrenzel, R. Knight, and J.I. Gordon. 2008. Evolution of mammals and their gut microbes. Science 320, 1647–1651.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C., M. Hamady, and R. Knight. 2006. UniFrac — An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7.

  • Martin, A.P. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68, 3673–3682.

    Article  CAS  PubMed  Google Scholar 

  • Motyka, R.J., S. O’Neel, C.L. Connor, and K.A. Echelmeyer. 2003. Twentieth century thinning of Mendenhall Glacier, Alaska, and its relationship to climate, lake calving, and glacier run-off. Global Planet Change 35, 93–112.

    Article  Google Scholar 

  • Nemergut, D.R., S.P. Anderson, C.C. Cleveland, A.P. Martin, A.E. Miller, A. Seimon, and S.K. Schmidt. 2007. Microbial community succession in an unvegetated, recently deglaciated soil. Microb. Ecol. 53, 110–122.

    Article  PubMed  Google Scholar 

  • Nemergut, D.R., E.K. Costello, A.F. Meyer, M.Y. Pescador, M.N. Weintraub, and S.K. Schmidt. 2005. Structure and function of alpine and arctic soil microbial communities. Res. Microbiol. 156, 775–784.

    Article  PubMed  Google Scholar 

  • Nemergut, D.R., A.R. Townsend, S.R. Sattin, K.R. Freeman, N. Fierer, J.C. Neff, W.D. Bowman, C.W. Schadt, M.N. Weintraub, and S.K. Schmidt. 2008. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ. Microbiol. 10, 3093–3105.

    Article  CAS  PubMed  Google Scholar 

  • Nicol, G.W., D. Tscherko, T.M. Embley, and J.I. Prosser. 2005. Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ. Microbiol. 7, 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Noll, M. and M. Wellinger. 2008. Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure. Soil Biol. Biochem. 40, 2611–2619.

    Article  CAS  Google Scholar 

  • Ohtonen, R., H. Fritze, T. Pennanen, A. Jumpponen, and J. Trappe. 1999. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119, 239–246.

    Article  Google Scholar 

  • Reed, S.C., C.C. Cleveland, and A.R. Townsend. 2007. Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39, 585–592.

    Article  Google Scholar 

  • Saiya-Cork, K.R., R.L. Sinsabaugh, and D.R. Zak. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315.

    Article  CAS  Google Scholar 

  • Schipper, L.A., B.P. Degens, G.P. Sparling, and L.C. Duncan. 2001. Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol. Biochem. 33, 2093–2103.

    Article  CAS  Google Scholar 

  • Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 1501–1506.

  • Schmidt, S.K., E.K. Costello, D.R. Nemergut, C.C. Cleveland, S.C. Reed, M.N. Weintraub, A.F. Meyer, and A.M. Martin. 2007. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88, 1379–1385.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, S.K., S.C. Reed, D.R. Nemergut, A.S. Grandy, C.C. Cleveland, M.N. Weintraub, A.W. Hill, E.K. Costello, A.F. Meyer, J.C. Neff, and A.M. Martin. 2008. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. P. Roy. Soc. B-Biol. Sci. 275, 2793–2802.

    Article  CAS  Google Scholar 

  • Sigler, W.V., S. Crivii, and J. Zeyer. 2002. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb. Ecol. 44, 306–316.

    Article  CAS  PubMed  Google Scholar 

  • Sigler, W.V. and J. Zeyer. 2002. Microbial diversity and activity along the forefields of two receding glaciers. Microb. Ecol. 43, 397–407.

    Article  CAS  PubMed  Google Scholar 

  • Sprent, J.I. and J.A. Raven. 1985. Evolution of nitrogen fixing symbioses. Proc. R. Soc. Edin. B 85, 215–237.

    Google Scholar 

  • Swofford, D.L. 2001. Phylogenetic Analysis Using Parsimony (*and Other Methods), 4th ed. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Tiessen, H. and J.O. Moir. 1993. Characterization of available P by sequential extraction, p. 75–86. In M.R. Carter (ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Tscherko, D., U. Hammesfahr, M.C. Marx, and E. Kandeler. 2004. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biol. Biochem. 36, 1685–1698.

    Article  CAS  Google Scholar 

  • Tscherko, D., U. Hammesfahr, G. Zeltner, E. Kandeler, and R. Bocker. 2005. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl. Ecol. 6, 367–383.

    Article  CAS  Google Scholar 

  • Tscherko, D., J. Rustemeier, A. Richter, W. Wanek, and E. Kandeler. 2003. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696.

    Article  Google Scholar 

  • Vitousek, P.M. 2004. Hawai’i as a Model System. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Weintraub, M.N., L.E. Scott-Denton, S.K. Schmidt, and R.K. Monson. 2007. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154, 327–338.

    Article  PubMed  Google Scholar 

  • White, C.C., M.S. Cresser, and S.J. Langan. 1996. The importance of marine-derived base cations and sulphur in estimating critical loads in Scotland. Sci. Total Environ. 177, 225–236.

    Article  CAS  Google Scholar 

  • **e, C.H. and A. Yokota. 2006. Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 56, 619–624.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana R. Nemergut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattin, S.R., Cleveland, C.C., Hood, E. et al. Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol. 47, 673–681 (2009). https://doi.org/10.1007/s12275-009-0194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0194-7

Keywords

Navigation