Log in

Flurbiprofen microneedle patches for the management of acute postoperative pain

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Acute postoperative pain is commonly treated with flurbiprofen (FBP), but conventional delivery methods are suboptimal. This study prepared a new non-burst release microneedles (MNs) using genipin cross-linked gelatin (cGel). By adding varying amounts of genipin to modulate the crosslinking degree of cGel, the drug release behavior of the drug-loaded MNs in the skin can be altered. The crosslinking parameters that meet therapeutic requirements are selected, thus providing rapid and long-lasting analgesic effects. cGel solutions were successfully cross-linked, altering matrix material microstructure, confirmed by scanning electron microscope imaging and fourier transform infrared spectroscopy. MNs demonstrated increasing mechanical strength with higher crosslinking. Drug release rates were rapid initially, then slowed, exhibiting a characteristic of decreased release rates with increasing degrees of crosslinking. In vivo, FBP/cGel MNs significantly reduced allodynia and hyperalgesia post-surgery, with the greatest effect observed at 2–3 h post-surgery, and can maintain analgesia for up to 6 h. Biosafety tests confirmed good biocompatibility. FBP/cGel MNs effectively penetrate the stratum corneum, safely delivering drugs with significant analgesic effects, excellent mechanical properties, and good biocompatibility, representing a promising strategy for managing acute postoperative pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, R. S.; Ullrich, K.; Regan, S.; Broussard, C.; Schwenkglenks, M.; Taylor, R. J.; Gordon, D. B.; Zaslansky, R.; Meissner, W.; Rothaug, J. et al. The impact of early postoperative pain on healthrelated quality of life. Pain Pract. 2013, 13, 515–523.

    Article  PubMed  Google Scholar 

  2. Mitra, S.; Carlyle, D.; Kodumudi, G.; Kodumudi, V.; Vadivelu, N. New advances in acute postoperative pain management. Curr. Pain Headache Rep. 2018, 22, 35.

    Article  PubMed  Google Scholar 

  3. Benyamin, R.; Trescot, A. M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S. E.; Vallejo, R. Opioid complications and side effects. Pain Physician 2008, 11, S105–S120.

    Article  PubMed  Google Scholar 

  4. Joshi, G. P.; Kehlet, H. Postoperative pain management in the era of ERAS: An overview. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 259–267.

    Article  PubMed  Google Scholar 

  5. O’Neill, A.; Lirk, P. Multimodal analgesia. Anesthesiol. Clin. 2022, 40, 455–468.

    Article  PubMed  Google Scholar 

  6. Schug, S. A.; Manopas, A. Update on the role of non-opioids for postoperative pain treatment. Best Pract. Res. Clin. Anaesthesiol. 2007, 21, 15–30.

    Article  CAS  PubMed  Google Scholar 

  7. Gustafsson, U. O.; Scott, M. J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T. A.; Young-Fadok, T. M.; Hill, A. G.; Soop, M. et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations: 2018. World J. Surg. 2019, 43, 659–695.

    Article  CAS  PubMed  Google Scholar 

  8. Cashman, J. N. The mechanisms of action of NSAIDs in analgesia. Drugs 1996, 52, 13–23.

    Article  CAS  PubMed  Google Scholar 

  9. Gupta, A.; Bah, M. NSAIDs in the treatment of postoperative pain. Curr. Pain Headache Rep. 2016, 20, 62.

    Article  PubMed  Google Scholar 

  10. Nathi, R.; Ketha, N. V. D. P.; Kowtarapu, L. P.; Muchakayala, S. K.; Konduru, N.; Saroja, B.; Marisetti, A. L. Flurbiprofen cataplasms: Development and validation of in-vitro dissolution methods and evaluation of multimedia dissolution profiles. Pharm. Sci. Adv. 2023, 1, 100018.

    Article  Google Scholar 

  11. Shah, K.; Gupta, J. K.; Chauhan, N. S.; Upmanyu, N.; Shrivastava, S. K.; Mishra, P. Prodrugs of NSAIDs: A review. Open Med. Chem. J. 2017, 11, 146–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nir, Y.; Paz, A.; Sabo, E.; Potasman, I. Fear of injections in young adults: Prevalence and associations. Am. J. Trop. Med. Hyg. 2003, 68, 341–344.

    Article  PubMed  Google Scholar 

  13. Usach, I.; Martinez, R.; Festini, T.; Peris, J. E. Subcutaneous injection of drugs: Literature review of factors influencing pain sensation at the injection site. Adv. Ther. 2019, 36, 2986–2996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prausnitz, M. R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, J. Z.; Ma, T. Y.; Zhang, L. H.; Cheng, X. M.; Wang, C. H. The transdermal performance, pharmacokinetics, and antiinflammatory pharmacodynamics evaluation of harmine-loaded ethosomes. Drug Dev. Ind. Pharm. 2020, 46, 101–108.

    Article  PubMed  Google Scholar 

  16. Yu, Y. Q.; Yang, X.; Wu, X. F.; Fan, Y. B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 2021, 9, 646554.

    Article  PubMed  PubMed Central  Google Scholar 

  17. An, H.; Gu, Z.; Huang, Z.; Huo, T.; Xu, Y. X.; Dong, Y. Z.; Wen, Y. Q. Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids Surf. B Biointerfaces 2024, 233, 113636.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, M. J.; Sheng, T.; Yu, J. C.; Gu, Z.; Xu, C. J. Microneedle biomedical devices. Nat. Rev. Bioeng. 2024, 2, 324–342.

    Article  Google Scholar 

  19. Nordquist, L.; Roxhed, N.; Griss, P.; Stemme, G. Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: An initial comparison with subcutaneous administration. Pharm. Res. 2007, 24, 1381–1388.

    Article  CAS  PubMed  Google Scholar 

  20. Van Der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J. Controlled Release 2012, 161, 645–655.

    Article  CAS  Google Scholar 

  21. Omatsu, T.; Chujo, K.; Miyamoto, K.; Okida, M.; Nakamura, K.; Aoki, N.; Morita, R. Metal microneedle fabrication using twisted light with spin. Opt. Express 2010, 18, 17967–17973.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, B. T.; Wei, J. S.; Tay, F. E. H.; Wong, Y. T.; Iliescu, C. Silicon microneedle array with biodegradable tips for transdermal drug delivery. Microsyst. Technol. 2008, 14, 1015–1019.

    Article  CAS  Google Scholar 

  23. Ita, K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research. J. Drug Deliv. Sci. Technol. 2018, 44, 314–322.

    Article  CAS  Google Scholar 

  24. Han, J. P.; Sheng, T.; Zhang, Y. Q.; Cheng, H.; Gao, J. Q.; Yu, J. C.; Gu, Z. Bioresponsive immunotherapeutic materials. Adv. Mater., in press, https://doi.org/10.1002/adma.202209778.

  25. Yang, Y.; Chu, H. Q.; Zhang, Y.; Xu, L. L.; Luo, R. Z.; Zheng, H.; Yin, T. L.; Li, Z. Rapidly separable bubble microneedle patch for effective local anesthesia. Nano Res. 2022, 15, 8336–8344.

    Article  CAS  Google Scholar 

  26. Luo, F. Q.; Chen, G. J.; Xu, W.; Zhou, D. J.; Li, J. X.; Huang, Y. C.; Lin, R.; Gu, Z.; Du, J. Z. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Res. 2021, 14, 2689–2696.

    Article  CAS  Google Scholar 

  27. Hong, T.; Shen, X. Y.; Syeda, M. Z.; Zhang, Y.; Sheng, H. N.; Zhou, Y. P.; Xu, J. M.; Zhu, C. J.; Li, H. J.; Gu, Z. et al. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. Nano Res. 2023, 16, 2660–2671.

    Article  CAS  PubMed  Google Scholar 

  28. Su, K.; Wang, C. M. Recent advances in the use of gelatin in biomedical research. Biotechnol. Lett. 2015, 37, 2139–2145.

    Article  CAS  PubMed  Google Scholar 

  29. Echave, M. C.; Hernáez-Moya, R.; Iturriaga, L.; Pedraz, J. L.; Lakshminarayanan, R.; Dolatshahi-Pirouz, A.; Taebnia, N.; Orive, G. Recent advances in gelatin-based therapeutics. Expert Opin. Biol. Ther. 2019, 19, 773–779.

    Article  CAS  PubMed  Google Scholar 

  30. Liang, H. C.; Chang, W. H.; Liang, H. F.; Lee, M. H.; Sung, H. W. Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J. Appl. Polym. Sci. 2004, 91, 4017–4026.

    Article  CAS  Google Scholar 

  31. Bozzini, S.; Petrini, P.; Altomare, L.; Tanzi, M. C. Fabrication of chemically cross-linked porous gelatin matrices. J. Appl. Biomater. Biomech. 2009, 7, 194–199.

    CAS  PubMed  Google Scholar 

  32. Vijayakumar, V.; Subramanian, K. Diisocyanate mediated polyether modified gelatin drug carrier for controlled release. Saudi Pharm. J. 2014, 22, 43–51.

    Article  PubMed  Google Scholar 

  33. Ahmed, R.; Ul Ain Hira, 5N.; Wang, M. W.; Iqbal, S.; Yi, J.; Hemar, Y. Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chem. 2024, 434, 137498.

    Article  CAS  PubMed  Google Scholar 

  34. Kirchmajer, D. M.; Watson, C. A.; Ranson, M.; Panhuis, M. I. H. Gelapin, a degradable genipin cross-linked gelatin hydrogel. RSC Adv. 2013, 3, 1073–1081.

    Article  CAS  Google Scholar 

  35. Butler, M. F.; Ng, Y. F.; Pudney, P. D. A. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J. Polym. Sci. A Pol. Chem. 2003, 41, 3941–3953.

    Article  CAS  Google Scholar 

  36. Bigi, A.; Panzavolta, S.; Roveri, N. Hydroxyapatite-gelatin films: A structural and mechanical characterization. Biomaterials 1998, 19, 739–744.

    Article  CAS  PubMed  Google Scholar 

  37. Ohri, R.; Wang, J. C. F.; Blaskovich, P. D.; Pham, L. N.; Costa, D. S.; Nichols, G. A.; Hildebrand, W. P.; Scarborough, N. L.; Herman, C. J.; Strichartz, G. R. Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision. Anesth. Analg. 2013, 117, 717–730.

    Article  CAS  PubMed  Google Scholar 

  38. Van De Loosdrecht, A. A.; Nennie, E.; Ossenkoppele, G. J.; Beelen, R. H. J.; Langenhuijsen, M. M. A. C. Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: A methodological study. J. Immunol. Methods 1991, 141, 15–22.

    Article  CAS  PubMed  Google Scholar 

  39. Zhen, Z.; Liu, X. L.; Huang, T.; **, T. F.; Zheng, Y. F. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater. Sci. Eng. C 2015, 46, 202–206.

    Article  CAS  Google Scholar 

  40. Chen, B. Z.; Zhang, L. Q.; **a, Y. Y.; Zhang, X. P.; Guo, X. D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 2020, 6, eaba7260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Friedman, M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 2004, 52, 385–406.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Q. L.; Zhu, D. D.; Chen, Y.; Guo, X. D. A fabrication method of microneedle molds with controlled microstructures. Mater. Sci. Eng. C 2016, 65, 135–142.

    Article  CAS  Google Scholar 

  43. Duarte, A. M.; Pospisilova, E.; Reilly, E.; Mujenda, F.; Hamaya, Y.; Strichartz, G. R. Reduction of postincisional allodynia by subcutaneous bupivacaine: Findings with a new model in the hairy skin of the rat. Anesthesiology 2005, 103, 113–125.

    Article  PubMed  Google Scholar 

  44. Podgórski, R.; Wojasiński, M.; Ciach, T. Nanofibrous materials affect the reaction of cytotoxicity assays. Sci. Rep. 2022, 12, 9047.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (Nos. 2022YFB3205602 and 2022YFB3804703), the National Natural Science Foundation of China (Nos. 52372174, 61875015, and T2125003), the Bei**g Natural Science Foundation (Nos. L212046 and L212010), the Fundamental Research Funds for the Central Universities. All animal experiments conducted in this study were reviewed and approved by the Animal Experimentation Ethics Committee of the Cancer Hospital, Chinese Academy of Medical Sciences (Ethical Approval No. NCC2023A291).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang, Zhou Li or Hui Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Zhang, Y., Yang, Y. et al. Flurbiprofen microneedle patches for the management of acute postoperative pain. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6751-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6751-x

Keywords

Navigation