Log in

A single atom photocatalyst co-doped with potassium and gallium for enhancing photocatalytic hydrogen peroxide synthesis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polymer carbon nitride (PCN) is widely used in photocatalysis. However, pristine PCN has disadvantages such as insufficient visible light absorption and low photogenerated carrier separation efficiency that greatly limited the photocatalytic efficiency. As a non-toxic metal, gallium has the potential to solve the defects of PCN. Gallium ions coordinated with nitrogen in carbon nitride to form Ga-N active sites and improved the photocatalytic activity. The doped potassium ions form a transmission channel for charge redistribution and transfer between adjacent layers, which is beneficial for better separation of photoexcited carriers. In this study, a series of PCN co-doped with gallium and potassium (Ga-K-PCN) were prepared. The experimental results indicated photocatalytic generation of hydrogen peroxide proceeds through the 2e- oxygen reduction reaction pathway. Notably, Nyquist plots and photocurrent results further proved that the presence of Ga-N sites and potassium ion do** could significantly improve the separation/transfer of intra-planar and interlayer charge carriers and thus enhance photocatalytic efficiency. The Ga10-K3-PCN photocatalysts promoted yield of H2O2, with reactivity at 28.2 μmol/(g·h) and solar-to-chemical conversion efficiency at 0.64%, surpassed that of a typical photo-catalyst based on PCN (0.18%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.; Zhao, T. S.; Zeng, L.; Yan, X. H. Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant. Int. J. Hydrogen Energy 2014, 39, 2320–2324.

    Article  CAS  Google Scholar 

  2. Goor, G. Hydrogen peroxide: Manufacture and industrial use for production of organic chemicals. In Catalytic Oxidations with Hydrogen Peroxide as Oxidant; Strukul, G., Ed., Springer: Dordrecht, 1992; pp 13–43

    Chapter  Google Scholar 

  3. Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen codoped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.

    Article  CAS  Google Scholar 

  4. Zhao, Y. J.; Liu, Y.; Cao, J. J.; Wang, H.; Shao, M. W.; Huang, H.; Liu, Y.; Kang, Z. H. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl. Catal. B: Environ. 2020, 278, 119289.

    Article  CAS  Google Scholar 

  5. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  PubMed  Google Scholar 

  6. Bai, X. J.; Sun, C. P.; Wu, S. L.; Zhu, Y. F. Enhancement of photocatalytic performance via a P3HT-g-C3N4 heterojunction. J. Mater. Chem. A 2015, 3, 2741–2747.

    Article  CAS  Google Scholar 

  7. Hu, S. Z.; Qu, X. Y.; Li, P.; Wang, F.; Li, Q.; Song, L. J.; Zhao, Y. F.; Kang, X. X. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: The effect of Cu(I)-N active sites. Chem. Eng. J. 2018, 334, 410–418.

    Article  CAS  Google Scholar 

  8. Luo, J.; Liu, Y. N.; Fan, C. Z.; Tang, L.; Yang, S. J.; Liu, M. L.; Wang, M. E.; Feng, C. Y.; Ouyang, X. L.; Wang, L. L. et al. Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 2021, 11, 11440–11450.

    Article  CAS  Google Scholar 

  9. Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058–3066.

    Article  CAS  Google Scholar 

  10. Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

    Article  CAS  Google Scholar 

  11. Jiang, J.; Cao, S. W.; Hu, C. L.; Chen, C. H. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin. J. Catal. 2017, 38, 1981–1989.

    Article  CAS  Google Scholar 

  12. Wang, S. H.; Zhan, J. W.; Chen, K.; Ali, A.; Zeng, L. H.; Zhao, H.; Hu, W. L.; Zhu, L. X.; Xu, X. L. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 8214–8222.

    Article  CAS  Google Scholar 

  13. Qiu, C. T.; Xu, Y. S.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y. N.; Liu, C. B.; Yu, L.; Chen, W. et al. Highly crystalline Kintercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 2019, 6, 1801403.

    Article  Google Scholar 

  14. Arai, N.; Saito, N.; Nishiyama, H.; Inoue, Y.; Domen, K.; Sato, K. Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration. Chem. Lett. 2006, 35, 796–797.

    Article  CAS  Google Scholar 

  15. Arai, N.; Saito, N.; Nishiyama, H.; Domen, K.; Kobayashi, H.; Sato, K.; Inoue, Y. Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) do** on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. Catal. Today 2007, 129, 407–413.

    Article  CAS  Google Scholar 

  16. Nosaka, Y.; Nosaka, A. Introduction to Photocatalysis: From Basic Science to Applications; Royal Society of Chemistry: Cambridge, 2016.

    Book  Google Scholar 

  17. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386.

    Article  CAS  Google Scholar 

  18. Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

    Article  CAS  Google Scholar 

  19. Teng, Z. Y.; Cai, W.; Sim, W.; Zhang, Q. T.; Wang, C. Y.; Su, C. L.; Ohno, T. Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Appl. Catal. B: Environ. 2021, 282, 119589.

    Article  CAS  Google Scholar 

  20. Núñez, J.; Fresno, F.; Platero-Prats, A. E.; Jana, P.; Fierro, J. L. G.; Coronado, J. M.; Serrano, D. P.; de la Peña O’Shea, V. A. Gapromoted photocatalytic H2 production over Pt/ZnO nanostructures. ACS Appl. Mater. Interfaces 2016, 8, 23729–23738.

    Article  PubMed  Google Scholar 

  21. Yu, X. L.; An, X. Q.; Shavel, A.; Ibáñez, M.; Cabot, A. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1-xGaxS2 nanocrystals. J. Mater. Chem. A 2014, 2, 12317–12322.

    Article  CAS  Google Scholar 

  22. Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for highperformance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

    Article  CAS  Google Scholar 

  23. **ong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

    Article  CAS  Google Scholar 

  24. Teng, Z. Y.; Cai, W.; Sim, W.; Zhang, Q. T.; Wang, C. Y.; Su, C. L.; Ohno, T. Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Appl. Catal. B: Environ. 2021, 282, 119589.

    Article  CAS  Google Scholar 

  25. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, E.; Ushiyama, H.; Yamashita, K. Theoretical studies on the mechanism of oxygen reduction reaction on clean and O-substituted Ta3N5(100) surfaces. Catal. Sci. Technol. 2015, 5, 2769–2776.

    Article  CAS  Google Scholar 

  27. Hong, J. H.; Ma, R.; Wu, Y. C.; Wen, T.; Ai, Y. J. CoNx/g-C3N4 Nanomaterials preparation by MOFs self-sacrificing template method for efficient photocatalytic reduction of U(VI). J. Inorg. Mater. 2022, 37, 741–749.

    Article  Google Scholar 

  28. Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; **e, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

    Article  CAS  PubMed  Google Scholar 

  29. **a, Y.; Sayed, M.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Single-atom heterogeneous photocatalysts. Chem Catal. 2021, 1, 1173–1214.

    Article  CAS  Google Scholar 

  30. Teng, Z. Y.; Cai, W.; Liu, S. X.; Wang, C. Y.; Zhang, Q. T.; Su, C. L.; Ohno, T. Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B: Environ. 2020, 271, 118917.

    Article  CAS  Google Scholar 

  31. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  CAS  Google Scholar 

  32. Dong, F.; Li, Y. H.; Wang, Z. Y.; Ho, W. K. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 2015, 358, 393–403.

    Article  CAS  Google Scholar 

  33. Lin, X.; Du, S. W.; Li, C. H.; Li, G. J.; Li, Y. J.; Chen, F. T.; Fang, P. F. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 1898–1908.

    Article  CAS  Google Scholar 

  34. Duan, L. Y.; Lu, S. S.; Duan, F.; Chen, M. Q. Preparation and photocatalytic activity of Co3O4/g-C3N4 composite photocatalysts via one-pot synthesis. Chin. J. Inorg. Chem. 2019, 35, 793–802.

    CAS  Google Scholar 

  35. Jones, R. D.; Summerville, D. A.; Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 1979, 79, 139–179.

    Article  CAS  Google Scholar 

  36. Wagner, C. D. Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss. Chem. Soc. 1975, 60, 291–300.

    Article  Google Scholar 

  37. Schlomberg, H.; Kröger, J.; Savasci, G.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J. et al. Structural insights into poly(heptazine imides): A light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 2019, 31, 7478–7486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lau, V. W. H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwarzer, A.; Saplinova, T.; Kroke, E. Tri-s-triazines (s-heptazines)-From a “mystery molecule” to industrially relevant carbon nitride materials. Coord. Chem. Rev. 2013, 257, 2032–2062.

    Article  CAS  Google Scholar 

  40. Makowski, S. J.; Schwarze, A.; Schmidt, P. J.; Schnick, W. Rareearth melonates LnC6N7(NCN)3·xH2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Tb; x = 8–12): Synthesis, crystal structures, thermal behavior, and photoluminescence properties of heptazine salts with trivalent cations. Eur. J. Inorg. Chem. 2012, 2012, 1832–1839.

    Article  CAS  Google Scholar 

  41. Chen, X.; Hu, R. DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts. Int. J. Hydrogen Energy 2019, 44, 15409–15416.

    Article  CAS  Google Scholar 

  42. Wang, X. H.; He, M. L.; Nan, Z. D. Effects of adsorption capacity and activity site on Fenton-like catalytic performance for Na and Fe co-doped g-C3N4. Sep. Purif. Technol. 2021, 256, 117765.

    Article  CAS  Google Scholar 

  43. Kessler, F. K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X. C.; Bojdys, M. J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030.

    Article  CAS  Google Scholar 

  44. Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2021, 6, 168–190.

    Article  CAS  Google Scholar 

  45. Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 131, 6225–6236.

    Article  Google Scholar 

  46. Hou, W. C.; Wang, Y. S. Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight. ACS Sustain. Chem. Eng. 2017, 5, 2994–3001.

    Article  CAS  Google Scholar 

  47. Jian, L.; Dong, Y. M.; Zhao, H.; Pan, C. S.; Wang, G. L.; Zhu, Y. F. Highly crystalline carbon nitrogen polymer with a strong built-in electric fields for ultra-high photocatalytic H2O2 production. Appl. Catal. B: Environ. 2024, 342, 123340.

    Article  CAS  Google Scholar 

  48. Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Mellitic triimide-doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production. ACS Sustain. Chem. Eng. 2017, 5, 6478–6485.

    Article  CAS  Google Scholar 

  49. Wang, Y. Y.; Zhao, S.; Zhang, Y. W.; Fang, J. S.; Zhou, Y. M.; Yuan, S. H.; Zhang, C.; Chen, W. X. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 2018, 440, 258–265.

    Article  CAS  Google Scholar 

  50. Zhang, Q. T.; Yuan, S. S.; Xu, B.; Xu, Y. S.; Cao, K. H.; **, Z. Y.; Qiu, C. T.; Zhang, M.; Su, C. L.; Ohno, T. A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catal. Today 2018, 315, 184–193.

    Article  CAS  Google Scholar 

  51. Bai, Y. Q.; Hu, Z. C.; Jiang, J. X.; Huang, F. Hydrophilic conjugated materials for photocatalytic hydrogen evolution. Chem.—Asian J. 2020, 15, 1780–1790.

    Article  CAS  PubMed  Google Scholar 

  52. Yang, J.; Acharjya, A.; Ye, M. Y.; Rabeah, J.; Li, S.; Kochovski, Z.; Youk, S.; Roeser, J.; Grüneberg, J.; Penschke, C. et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19797–19803.

    Article  CAS  Google Scholar 

  53. Sachs, M.; Sprick, R. S.; Pearce, D.; Hillman, S. A. J.; Monti, A.; Guilbert, A. A. Y.; Brownbill, N. J.; Dimitrov, S.; Shi, X. Y.; Blanc, F. et al. Understanding structure–activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat. Commun. 2018, 9, 4968.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jung, O.; Pegis, M. L.; Wang, Z. X.; Banerjee, G.; Nemes, C. T.; Hoffeditz, W. L.; Hupp, J. T.; Schmuttenmaer, C. A.; Brudvig, G. W.; Mayer, J. M. Highly active NiO photocathodes for H2O2 production enabled via outer-sphere electron transfer. J. Am. Chem. Soc. 2018, 140, 4079–4084.

    Article  CAS  PubMed  Google Scholar 

  55. Chu, Y. Y.; Zheng, X. L.; Fan, J. R. Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H2O2 via two-electron oxygen reduction and the degradation of 2,4-DCP via photocatalytic oxidation coupled with Fenton oxidation. Chem. Eng. J. 2022, 431, 134020.

    Article  CAS  Google Scholar 

  56. Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of Mitsubishi Chemical Corporation and the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research B (No. 20H02847), the Support for Pioneering Research Initiated by the Next Generation program for Japan Science and Technology Agency (No. JPMJSP2154), and the National Natural Science Foundation of China (No. 52103008) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ng Zhu or Teruhisa Ohno.

Electronic Supplementary Material

12274_2024_6736_MOESM1_ESM.pdf

A single atom photocatalyst co-doped with potassium and gallium for enhancing photocatalytic hydrogen peroxide synthesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Tanaka, Y., Zhu, X. et al. A single atom photocatalyst co-doped with potassium and gallium for enhancing photocatalytic hydrogen peroxide synthesis. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6736-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6736-9

Keywords

Navigation