Log in

Emergent ultra-high temperature ferromagnetism in La2CoOx thin films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Searching for novel ferromagnetic oxides with high Curie temperature (TC) has been one of the main goals for oxide spintronics. The well-known perovskite cobaltate LaCoO3 is a classical ferromagnet in its thin-film form; however, it suffers from a low TC (∼ 85 K). Here we report a new type of ferromagnetic La-Co-O films with an ultrahigh TC of ∼ 820 K. They are fabricated by pulsed laser deposition from a LaCoO3 target at low oxygen partial pressures. Detailed structural analysis indicates that they crystallize in terms of the Ruddlesden–Popper phase of La2CoOx. In sharp contrast to the antiferromagnetism of bulk La2CoO4, the strong ferromagnetism in the La2CoOx thin films is firmly demonstrated by magnetometry measurements, X-ray magnetic circular dichroism characterization, and magnetotransport experiments. More importantly, density functional theory calculations indicate that the nonstoichiometric oxygen induces an antiferromagnetic-to-ferromagnetic phase transition, accompanied by the orbital reconstruction of Co 3d electrons. Thus, our study provides an attractive strategy for designing or synthesizing exotic magnetic oxides with high ordering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, W. J.; Smeaton, M. A.; Jia, C. J.; Goodge, B. H.; Cho, B. G.; Lee, K.; Osada, M.; Jost, D.; Ievlev, A. V.; Moritz, B. et al. Geometric frustration of Jahn–Teller order in the infinite-layer lattice. Nature 2023, 615, 237–243.

    Article  CAS  PubMed  Google Scholar 

  2. Qin, P. X.; Yan, H.; Wang, X. N.; Chen, H. Y.; Meng, Z. A.; Dong, J. T.; Zhu, M.; Cai, J. L.; Feng, Z. X.; Zhou, X. R. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 2023, 613, 485–489.

    Article  CAS  PubMed  Google Scholar 

  3. Feng, Z. X.; Zhou, X. R.; Šmejkal, L.; Wu, L.; Zhu, Z. W.; Guo, H. X.; González-Hernández, R.; Wang, X. N.; Yan, H.; Qin, P. X. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022, 5, 735–743.

    Article  CAS  Google Scholar 

  4. Zhou, X. R.; Zhang, X. W.; Yi, J. B.; Qin, P. X.; Feng, Z. X.; Jiang, P. H.; Zhong, Z. C.; Yan, H.; Wang, X. N.; Chen, H. Y. et al. Antiferromagnetism in Ni-based superconductors. Adv. Mater. 2022, 34, 2106117.

    Article  CAS  Google Scholar 

  5. Zhou, K.; Shang, G.; Hsu, H. H.; Han, S. T.; Roy, V. A. L.; Zhou, Y. Emerging 2D metal oxides: From synthesis to device integration. Adv. Mater. 2023, 35, 2207774.

    Article  CAS  Google Scholar 

  6. Endo, T.; Tsuruoka, S.; Tadano, Y.; Kaneta-Takada, S.; Seki, Y.; Kobayashi, M.; Anh, L. D.; Seki, M.; Tabata, H.; Tanaka, M. et al. Giant spin-valve effect in planar spin devices using an artificially implemented nanolength Mott-insulator region. Adv. Mater. 2023, 35, 2300110.

    Article  CAS  Google Scholar 

  7. Meng, Z. A.; Yan, H.; Qin, P. X.; Zhou, X. R.; Wang, X. N.; Chen, H. Y.; Liu, L.; Liu, Z. Q. Topotactic transition: A promising opportunity for creating new oxides. Adv. Funct. Mater. 2023, 33, 2305225.

    Article  CAS  Google Scholar 

  8. Panca, A.; Panidi, J.; Faber, H.; Stathopoulos, S.; Anthopoulos, T. D.; Prodromakis, T. Flexible oxide thin film transistors, memristors, and their integration. Adv. Funct. Mater. 2023, 33, 2213762.

    Article  CAS  Google Scholar 

  9. Zhou, X. R.; Qin, P. X.; Feng, Z. X.; Yan, H.; Wang, X. N.; Chen, H. Y.; Meng, Z. A.; Liu, Z. Q. Experimental progress on the emergent infinite-layer Ni-based superconductors. Mater. Today 2022, 55, 170–185.

    Article  CAS  Google Scholar 

  10. Haverkort, M. W.; Hu, Z.; Cezar, J. C.; Burnus, T.; Hartmann, H.; Reuther, M.; Zobel, C.; Lorenz, T.; Tanaka, A.; Brookes, N. B. et al. Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism. Phys. Rev. Lett. 2006, 97, 176405.

    Article  CAS  PubMed  Google Scholar 

  11. Podlesnyak, A.; Streule, S.; Mesot, J.; Medarde, M.; Pomjakushina, E.; Conder, K.; Tanaka, A.; Haverkort, M. W.; Khomskii, D. I. Spinstate transition in LaCoO3: Direct neutron spectroscopic evidence of excited magnetic states. Phys. Rev. Lett. 2006, 97, 247208.

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs, D.; Pinta, C.; Schwarz, T.; Schweiss, P.; Nagel, P.; Schuppler, S.; Schneider, R.; Merz, M.; Roth, G.; Löhneysen, H. V. Ferromagnetic order in epitaxially strained LaCoO3 thin films. Phys. Rev. B 2007, 75, 144402.

    Article  Google Scholar 

  13. Fuchs, D.; Arac, E.; Pinta, C.; Schuppler, S.; Schneider, R.; Löhneysen, H. V. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys. Rev. B 2008, 77, 014434.

    Article  Google Scholar 

  14. Jung, J. I.; Jeong, H. Y.; Lee, J. S.; Kim, M. G.; Cho, J. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem., Int. Ed. 2014, 53, 4582–4586.

    Article  CAS  Google Scholar 

  15. Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 2016, 7, 11510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chainani, A.; Mathew, M.; Sarma, D. D. Electron-spectroscopy study of the semiconductor-metal transition in La1−xSrxCoO3. Phys. Rev. B 1992, 46, 9976–9983.

    Article  CAS  Google Scholar 

  17. Androulakis, J.; Katsarakis, N.; Giapintzakis, J. Ferromagnetic and antiferromagnetic interactions in lanthanum cobalt oxide at low temperatures. Phys. Rev. B 2001, 64, 174401.

    Article  Google Scholar 

  18. Zhang, Q. H.; Gao, A.; Meng, F. Q.; **, Q.; Lin, S.; Wang, X. F.; **ao, D. D.; Wang, C.; **, K. J.; Su, D. et al. Near-room temperature ferromagnetic insulating state in highly distorted LaCoO2.5 with CoO5 square pyramids. Nat. Commun. 2021, 12, 1853.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, X. N.; Feng, Z. X.; Qin, P. X.; Yan, H.; Zhou, X. R.; Guo, H. X.; Leng, Z. G. G.; Chen, W. Q.; Jia, Q. N.; Hu, Z. X. et al. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019, 181, 537–543.

    Article  CAS  Google Scholar 

  20. Chen, Z. H.; Chen, Z. H.; Liu, Z. Q.; Holtz, M. E.; Li, C. J.; Wang, X. R.; Lü, W. M.; Motapothula, M.; Fan, L. S.; Turcaud, J. A. et al. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys. Rev. Lett. 2017, 119, 156801.

    Article  PubMed  Google Scholar 

  21. Coey, J. M. D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, 2010.

    Google Scholar 

  22. Coey, J. M. D. Magnetism in d0 oxides. Nat. Mater. 2019, 18, 652–656.

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama, H.; Althammer, M.; Chen, Y. T.; Uchida, K.; Kajiwara, Y.; Kikuchi, D.; Ohtani, T.; Geprägs, S.; Opel, M.; Takahashi, S. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 2013, 110, 206601.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Z. Q.; Chen, H.; Wang, J. M.; Liu, J. H.; Wang, K.; Feng, Z. X.; Yan, H.; Wang, X. R.; Jiang, C. B.; Coey, J. M. D. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 2018, 1, 172–177.

    Article  CAS  Google Scholar 

  25. Guo, H. X.; Feng, Z. X.; Yan, H.; Liu, J. Z.; Zhang, J.; Zhou, X. R.; Qin, P. X.; Cai, J. L.; Zeng, Z. M.; Zhang, X. et al. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv. Mater. 2020, 32, 2002300.

    Article  CAS  Google Scholar 

  26. Qin, P. X.; Yan, H.; Fan, B. S.; Feng, Z. X.; Zhou, X. R.; Wang, X. N.; Chen, H. Y.; Meng, Z. A.; Duan, W. H.; Tang, P. Z. et al. Chemical Potential Switching of the Anomalous Hall effect in an ultrathin noncollinear antiferromagnetic metal. Adv. Mater. 2022, 34, 2200487.

    Article  CAS  Google Scholar 

  27. Qin, P. X.; Feng, Z. X.; Zhou, X. R.; Guo, H. X.; Wang, J. H.; Yan, H.; Wang, X. N.; Chen, H. Y.; Zhang, X.; Wu, H. J. et al. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano 2020, 14, 6242–6248.

    Article  CAS  PubMed  Google Scholar 

  28. Qin, P. X.; Zhou, X. R.; Liu, L.; Meng, Z. A.; Yan, H.; Chen, H. Y.; Wang, X. N.; Wu, X. J.; Liu, Z. Q. Antiferromagnetic spintronics: Towards high-density and ultrafast information technology. Sci. Bull. 2023, 68, 972–974.

    Article  CAS  Google Scholar 

  29. Babkevich, P.; Prabhakaran, D.; Frost, C. D.; Boothroyd, A. T. Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4 studied by inelastic neutron scattering. Phys. Rev. B 2010, 82, 184425.

    Article  Google Scholar 

  30. Yamada, K.; Matsuda, M.; Endoh, Y.; Keimer, B.; Birgeneau, R. J.; Onodera, S.; Mizusaki, J.; Matsuura, T.; Shirane, G. Successive antiferromagnetic phase transitions in single-crystal La2CoO4. Phys. Rev. B 1989, 39, 2336–2343.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z. Q. L. acknowledges the financial support of the National Key Research and Development Program of China (Nos. 2022YFB3506000 and 2022YFA1602701), the National Natural Science Foundation of China (Nos. 52271235 and 52121001), and Bei**g Natural Science Foundation (No. JQ23005). P. X. Q. acknowledges the financial support of the China National Postdoctoral Program for Innovative Talents (No. BX20230451).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Yan, Peixin Qin, Qinghua Zhang, Zhicheng Zhong or Zhiqi Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Yan, H., Qin, P. et al. Emergent ultra-high temperature ferromagnetism in La2CoOx thin films. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6701-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6701-7

Keywords

Navigation