Log in

Controlling electrodeposited Ni layers by different-sized graphene oxides enables conductive e-textiles for the highly sensitive electrochemical detection of glucose

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the increasing popularity of wearable electronic devices, there is an urgent demand to develop electronic textiles (e-textiles) for device fabrication. Nevertheless, the difficulty in reconciliation between conductivity and manufacturing costs hinders their large-scale practical applications. Herein, we reported a facile and economic method for preparing conductive e-textiles. Specifically, nonconductive polypropylene (PP) was wrapped by reduced graphene oxide (rGO), followed by the electrodeposition of Ni nanoparticles (NPs). Notably, modulating the sheet size of graphene oxide (GO) resulted in controllable deposition of Ni NPs with adjustable size, allowing for controlled manipulations over the structures, morphologies, and conductivity of the obtained e-textiles, which influenced their performance in electrochemical glucose detection subsequently. The optimal material, denoted as Ni/rGO0.2/PP, exhibited an impressive conductivity of 7.94 × 104 S·m−1. With regard to the excellent conductivity of the as-prepared e-textiles and the high electrocatalytic activity of Ni for glucose oxidation, the as-prepared e-textiles were subjected to glucose detection. It was worth emphasizing that the Ni/rGO0.2/PP-based electrode demonstrated promising performance for nonenzymatic/label-free glucose detection, with a detection limit of 0.36 µM and a linear response range of 0.5 µM to 1 mM. This study paves the way for further development and application prospects of conductive e-textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 2022, 1, 495–506.

    Article  CAS  Google Scholar 

  2. Chen, H.; Zhuo, F. L.; Zhou, J.; Liu, Y.; Zhang, J. B.; Dong, S. R.; Liu, X. Q.; Elmarakbi, A.; Duan, H. G.; Fu, Y. Q. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576.

    Article  CAS  Google Scholar 

  3. Miao, Y.; Zhou, M. J.; Yi, J.; Wang, Y. Y.; Tian, G. J.; Zhang, H. X.; Huang, W. L.; Wang, W. H.; Wu, R. H.; Ma, L. Y. Woven fabric triboelectric nanogenerators for human–computer interaction and physical health monitoring. Nano Res., in press, https://doi.org/10.1007/s12274-024-6410-2.

  4. Sarker, B. K.; Shrestha, R.; Singh, K. M.; Lombardi, J.; An, R.; Islam, A.; Drummy, L. F. Label-free neuropeptide detection beyond the debye length limit. ACS Nano 2023, 17, 20968–20978.

    Article  PubMed  Google Scholar 

  5. Jiao, X. Y.; Xu, L. L.; Sun, X. Y.; Shi, C.; Hou, P. X.; Liu, C.; Cheng, H. M. Single-wall carbon nanotube fiber non-woven fabrics with a high electrothermal heating response. Nano Res., in press, https://doi.org/10.1007/s12274-023-6407-2.

  6. Li, X.; Sun, X. H.; Zhang, J. Y.; Xue, S.; Zhi, L. J. A stretchable fabric as strain sensor integrating electromagnetic shielding and electrochemical energy storage. Nano Res. 2023, 16, 12753–12761.

    Article  CAS  Google Scholar 

  7. Li, Z.; Islam, A.; Khuje, S.; Ren, S. Q. Electrically-driven textiles using hierarchical aramid fiber. Nano Energy 2023, 117, 108888.

    Article  CAS  Google Scholar 

  8. Fu, C. Y.; Wang, Z. G.; Gao, Y. T.; Zhao, J.; Liu, Y. C.; Zhou, X. Y.; Qin, R. R.; Pang, Y. Y.; Hu, B. W.; Zhang, Y. Y. et al. Sustainable polymer coating for stainproof fabrics. Nat. Sustain. 2023, 6, 984–994.

    Article  Google Scholar 

  9. Liu, W. W.; Xue, C.; Long, X. Y.; Ren, Y.; Chen, Z.; Zhang, W. Highly flexible and multifunctional CNTs/TPU fiber strain sensor formed in one-step via wet spinning. J. Alloys Compd. 2023, 948, 169641.

    Article  CAS  Google Scholar 

  10. Yun, Y. J.; Hong, W. G.; Kim, W. J.; Jun, Y.; Kim, B. H. A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics. Adv. Mater. 2013, 25, 5701–5705.

    Article  CAS  PubMed  Google Scholar 

  11. Sadanandan, K. S.; Saadi, Z.; Murphy, C.; Grikalaite, I.; Craciun, M. F.; Neves, A. I. S. Fabric-based triboelectric nanogenerators with ultrasonic spray coated graphene electrodes. Nano Energy 2023, 116, 108797.

    Article  Google Scholar 

  12. Veeralingam, S.; Gandrothula, A.; Badhulika, S. Tungsten oxysulfide nanoparticles interspersed nylon based e-textile as a low cost, wearable multifunctional platform for ultra-sensitive tactile sensing and breath sensing applications. Mater. Res. Bull. 2023, 160, 112133.

    Article  CAS  Google Scholar 

  13. Sanchez, F. A. C.; Boudaoud, H.; Camargo, M.; Pearce, J. M. Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. J. Clean. Prod. 2020, 264, 121602.

    Article  Google Scholar 

  14. Zhao, C. X.; Mark, L. H.; Kim, S.; Chang, E.; Park, C. B.; Lee, P. C. Recent progress in micro-/nano-fibrillar reinforced polymeric composite foams. Polym. Eng. Sci. 2021, 61, 926–941.

    Article  CAS  Google Scholar 

  15. Lyu, L. X.; Bagchi, M.; Markoglou, N.; An, C. J.; Peng, H.; Bi, H. F.; Yang, X. H.; Sun, H. J. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. J. Hazard. Mater. 2024, 461, 132566.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Z. B.; **, H. H.; Yang, Z. G.; He, D. P. Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Met. 2023, 42, 1098–1117.

    Article  CAS  Google Scholar 

  17. Yip, J.; Jiang, S. Q.; Wong, C. Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments. Surf. Coat. Technol. 2009, 204, 380–385.

    Article  CAS  Google Scholar 

  18. Wang, L.; Wang, X. Y.; Kannan, P.; Ji, S.; Wang, Z. N. A highly-stable flexible electrode based on Co(OH)2@NiSe2 electroplated on metals co-coated textiles. Mater. Lett. 2020, 279, 128492.

    Article  CAS  Google Scholar 

  19. Cao, J.; Zhang, Z.; Dong, H. H.; Ding, Y. L.; Chen, R. H.; Liao, Y. P. Dry and binder-free deposition of single-walled carbon nanotubes on fabrics for thermal regulation and electromagnetic interference shielding. ACS Appl. Nano Mater. 2022, 5, 13373–13383.

    Article  CAS  Google Scholar 

  20. Wang, C. B.; Zhang, W. H.; Xu, X. T.; Su, J. B.; Shi, J.; Amin, M. A.; Zhang, J. Y.; Yamauchi, Y. Multifunctional wearable thermal management textile fabricated by one-step sputtering. Nano Today 2022, 45, 101526.

    Article  CAS  Google Scholar 

  21. Song, Q.; Zhao, R. X.; Liu, T.; Gao, L. L.; Su, C. C.; Ye, Y. M.; Chan, S. Y.; Liu, X. Y.; Wang, K.; Li, P. et al. One-step vapor deposition of fluorinated polycationic coating to fabricate antifouling and anti-infective textile against drug-resistant bacteria and viruses. Chem. Eng. J. 2021, 418, 129368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, Q.; Huang, J. H.; Wang, J.; Tan, R. Q.; Feng, Y.; Xu, X. W.; Li, J.; Lu, Y. H.; Song, W. J. A universal green coating strategy on textiles for simultaneous color and thermal management. J. Mater. Sci. 2022, 57, 11477–11490.

    Article  CAS  Google Scholar 

  23. Qu, S. X.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Dynamic stretching-electroplating metal-coated textile for a flexible and stretchable zinc-air battery. Carbon Energy 2022, 4, 867–877.

    Article  CAS  Google Scholar 

  24. Chang, W.; Nam, D.; Lee, S.; Ko, Y.; Kwon, C. H.; Ko, Y.; Cho, J. Fibril-type textile electrodes enabling extremely high areal capacity through pseudocapacitive electroplating onto chalcogenide nanoparticle-encapsulated fibrils. Adv. Sci. 2022, 9, 2203800.

    Article  CAS  Google Scholar 

  25. Quan, Y. H.; Zhou, W. J.; Wu, T.; Chen, M. F.; Han, X.; Tian, Q. H.; Xu, J. L.; Chen, J. Z. Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chem. Eng. J. 2022, 446, 137056.

    Article  Google Scholar 

  26. Zhang, Q.; Wang, K.; Chen, X. C.; Tang, X. H.; Zhao, Q.; Fu, Q. Improving the thermal stability and functionality of bamboo fibers by electroless plating. ACS Sustainable Chem. Eng. 2022, 10, 16935–16947.

    Article  CAS  Google Scholar 

  27. He, D. D.; Qin, H. M.; Qian, L. Y.; Sun, L. Y.; Li, J. R. Conductive chitosan nonwoven fabrics by electroless plating with excellent laundering durability for wearable electronics. J. Nat. Fibers 2022, 19, 14855–14865.

    Article  CAS  Google Scholar 

  28. Gong, W. L.; Zheng, K.; Zhang, C. Y.; Liu, L.; Shan, Y. T.; Yao, J. M. Simultaneous and efficient removal of heavy metal ions and organophosphorus by amino-functionalized cellulose from complex aqueous media. J. Clean. Prod. 2022, 367, 133040.

    Article  CAS  Google Scholar 

  29. Chen, Y.; Yuan, M.; Zhang, Y. Y.; Wang, X. J.; Ke, F. Y.; Wang, H. P. One-pot synthesis of tin oxide/reduced graphene oxide composite coated fabric for wearable ammonia sensor with fast response/recovery rate. J. Alloys Compd. 2023, 931, 167585.

    Article  CAS  Google Scholar 

  30. Muratov, D. S.; Vanyushin, V.; Koshlakova, V. A.; Kolesnikov, E. A.; Maksimkin, A. V.; Stepashkin, A. A.; Kuznetsov, D. V. Improved mechanical and thermal properties of polypropylene filled with reduced graphene oxide (rGO) and hexagonal boron nitride (hBN) particles. J. Alloys Compd. 2024, 972, 172882.

    Article  CAS  Google Scholar 

  31. Ghorbani, M.; Sheibani, S.; Abdizadeh, H.; Golobostanfard, M. R. Boosting solar fuel production of bismuth ferrite thin film by incorporating reduced graphene oxide. J. Alloys Compd. 2023, 936, 168300.

    Article  CAS  Google Scholar 

  32. Flis-Kabulska, I.; Flis, J. Electrodeposits of nickel with reduced graphene oxide (Ni/rGO) and their enhanced electroactivity towards hydrogen evolution in water electrolysis. Mater. Chem. Phys. 2020, 241, 122316.

    Article  CAS  Google Scholar 

  33. Hong, Y. Z.; Tsai, H. C.; Wang, Y. H.; Aumanen, J.; Myllyperkiö, P.; Johansson, A.; Kuo, Y. C.; Chang, L. Y.; Chen, C. H.; Pettersson, M. et al. Reduction-oxidation dynamics of oxidized graphene: Functional group composition dependent path to reduction. Carbon 2018, 129, 396–402.

    Article  CAS  Google Scholar 

  34. De Silva, K. K. H.; Huang, H. H.; Joshi, R.; Yoshimura, M. Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 2020, 166, 74–90.

    Article  CAS  Google Scholar 

  35. Li, M. Y.; Yin, B.; Gao, C. Y.; Guo, J.; Zhao, C.; Jia, C. C.; Guo, X. F. Graphene: Preparation, tailoring, and modification. Exploration 2023, 3, 20210233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaciulis, S.; Mezzi, A.; Soltani, P.; de Caro, T.; **a, H.; Wang, Y. L.; Zhai, T.; Lavorgna, M. Reduction of graphene oxide by UHV annealing. Surf. Interface Anal. 2018, 50, 1089–1093.

    Article  CAS  Google Scholar 

  37. Miao, C. C.; Zheng, X. W.; Sun, J. M.; Wang, H.; Qiao, J.; Han, N.; Wang, S. P.; Gao, W.; Liu, X. H.; Yang, Z. X. Facile electrodeposition of amorphous nickel/nickel sulfide composite films for high-efficiency hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 927–933.

    Article  CAS  Google Scholar 

  38. Shu, Y.; Su, T.; Lu, Q.; Shang, Z. J.; Xu, Q.; Hu, X. Y. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection. Anal. Chem. 2021, 93, 16222–16230.

    Article  CAS  PubMed  Google Scholar 

  39. Karikalan, N.; Velmurugan, M.; Chen, S. M.; Karuppiah, C. Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor. ACS Appl. Mater. Interfaces 2016, 8, 22545–22553.

    Article  CAS  PubMed  Google Scholar 

  40. Sun, A. L.; Zheng, J. B.; Sheng, Q. L. A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step coelectrodeposition in ionic liquids. Electrochim. Acta 2012, 65, 64–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Sanya Science and Education Innovation Park of Wuhan University of Technology (No. 2022KF0013), the Natural Science Foundation of Hainan Province of China (No. 623MS068), the PhD Scientific Research and Innovation Foundation of Sanya Yazhou Bay Science and Technology City (No. HSPHDSRF-2023-03-013), and the National Natural Science Foundation of China (Nos. 22279097 and 62001338). The authors also acknowledge the Institutional Center for Shared Technologies and Facilities of IDSSE, CAS for the help from the intermediate engineers, Dongmei Wang and Shuang Liu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Chen or Da** He.

Electronic Supplementary Material

12274_2024_6594_MOESM1_ESM.pdf

Controlling electrodeposited Ni layers by different-sized graphene oxides enables conductive e-textiles for the highly sensitive electrochemical detection of glucose

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, Z., Ji, X. et al. Controlling electrodeposited Ni layers by different-sized graphene oxides enables conductive e-textiles for the highly sensitive electrochemical detection of glucose. Nano Res. 17, 6258–6264 (2024). https://doi.org/10.1007/s12274-024-6594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6594-5

Keywords

Navigation