Log in

A robust synthesis route of confined carbyne

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The unique mechanical, optical, and electrical properties of carbyne, a one-dimensional allotrope of carbon, make it a highly promising material for various applications. It has been demonstrated that carbon nanotubes (CNTs) can serve as an ideal host for the formation of confined carbyne (CC), with the yield being influenced by the quality of the carbon nanotubes for confinement and the carbon source for carbyne growth. In this study, a robust synthesis route of CC within CNTs is proposed. C70 was utilized as a precursor to provide an additional carbon source, based on its ability to supply more carbon atoms than C60 at the same filling ratio. Multi-step transformation processes, including defect creation, were designed to enhance the yield of CC. As a result, the yield of CC was significantly increased for the C70 encapsulated single-walled CNTs by more than an order of magnitude than the empty counterparts, which also surpasses that of the double-walled CNTs, making it the most effective route for synthesizing CC. These findings highlight the importance of the additional carbon source and the optimal pathway for CC formation, offering valuable insights for the application of materials with high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A. Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 2016, 8, 4414–4435.

    Article  CAS  PubMed  Google Scholar 

  2. Liu, M. J.; Artyukhov, V. I.; Lee, H.; Xu, F. B.; Yakobson, B. I. Carbyne from first principles: Chain of c atoms, a nanorod or a nanorope. ACS Nano 2013, 7, 10075–10082.

    Article  CAS  PubMed  Google Scholar 

  3. Fazio, E.; Neri, F.; Patanè, S.; D’Urso, L.; Compagnini, G. Optical limiting effects in linear carbon chains. Carbon 2011, 49, 306–310.

    Article  CAS  Google Scholar 

  4. Al-Backri, A.; Zólyomi, V.; Lambert, C. J. Electronic properties of linear carbon chains: Resolving the controversy. J. Chem. Phys. 2014, 140, 104306.

    Article  PubMed  Google Scholar 

  5. Tsuji, M.; Kuboyama, S.; Matsuzaki, T.; Tsuji, T. Formation of hydrogen-capped polyynes by laser ablation of C60 particles suspended in solution. Carbon 2003, 41, 2141–2148.

    Article  CAS  Google Scholar 

  6. Wu, Y. L.; Zhang, Y. F.; Zhu, T. X.; Li, H. R.; Liu, Y.; Zhao, X. L. Effects of precursor molecules on polyyne formation by arc discharge between two copper electrodes. Chem. Phys. Lett. 2019, 730, 64–69.

    Article  CAS  Google Scholar 

  7. Tykwinski, R. R.; Chalifoux, W.; Eisler, S.; Lucotti, A.; Tommasini, M.; Fazzi, D.; Del Zoppo, M.; Zerbi, G. Toward carbyne: Synthesis and stability of really long polyynes. Pure Appl. Chem. 2010, 82, 891–904.

    Article  CAS  Google Scholar 

  8. Gao, Y. Z.; Tykwinski, R. R. Advances in polyynes to model carbyne. Acc. Chem. Res. 2022, 55, 3616–3630.

    Article  CAS  PubMed  Google Scholar 

  9. Gao, Y. Z.; Hou, Y. X.; Gordillo Gámez, F.; Ferguson, M. J.; Casado, J.; Tykwinski, R. R. The loss of endgroup effects in long pyridyl-endcapped oligoynes on the way to carbyne. Nat. Chem. 2020, 12, 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, X. L.; Ando, Y.; Liu, Y.; **no, M.; Suzuki, T. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 2003, 90, 187401.

    Article  PubMed  Google Scholar 

  11. Shi, L.; Rohringer, P.; Suenaga, K.; Niimi, Y.; Kotakoski, J.; Meyer, J. C.; Peterlik, H.; Wanko, M.; Cahangirov, S.; Rubio, A. et al. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 2016, 15, 634–639.

    Article  CAS  PubMed  Google Scholar 

  12. Heeg, S.; Shi, L.; Poulikakos, L. V.; Pichler, T.; Novotny, L. Carbon nanotube chirality determines properties of encapsulated linear carbon chain. Nano Lett. 2018, 18, 5426–5431.

    Article  CAS  PubMed  Google Scholar 

  13. Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Oxidation and thermal stability of linear carbon chains contained in thermally treated double-walled carbon nanotubes. Small 2007, 3, 788–792.

    Article  CAS  PubMed  Google Scholar 

  14. Cui, W. L.; Saito, T.; Ayala, P.; Pichler, T.; Shi, L. Oxidation stability of confined linear carbon chains, carbon nanotubes, and graphene nanoribbons as 1D nanocarbons. Nanoscale 2019, 11, 15253–15258.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Y. F.; Zhao, J. W.; Fang, Y. H.; Liu, Y.; Zhao, X. L. Preparation of long linear carbon chain inside multi-walled carbon nanotubes by cooling enhanced hydrogen arc discharge method. Nanoscale 2018, 10, 17824–17833.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y. F.; Chang, W. W.; Liu, Y.; Maruyama, T.; Zhao, X. L. High-yield growth of multi-walled carbon nanowires by magnetic field controlled arc technique. Carbon 2020, 158, 672–680.

    Article  CAS  Google Scholar 

  17. Zhao, C.; Kitaura, R.; Hara, H.; Irle, S.; Shinohara, H. Growth of linear carbon chains inside thin double-wall carbon nanotubes. J. Phys. Chem. C 2011, 115, 13166–13170.

    Article  CAS  Google Scholar 

  18. Chang, W. W.; Liu, F.; Liu, Y. F.; Zhu, T. X.; Fang, L.; Li, Q. Q.; Liu, Y.; Zhao, X. L. Smallest carbon nanowires made easy: Long linear carbon chains confined inside single-walled carbon nanotubes. Carbon 2021, 183, 571–577.

    Article  CAS  Google Scholar 

  19. Shi, L.; Rohringer, P.; Wanko, M.; Rubio, A.; Waßerroth, S.; Reich, S.; Cambré, S.; Wenseleers, W.; Ayala, P.; Pichler, T. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Phys. Rev. Mater. 2017, 1, 075601.

    Article  Google Scholar 

  20. Heeg, S.; Shi, L.; Pichler, T.; Novotny, L. Raman resonance profile of an individual confined long linear carbon chain. Carbon 2018, 139, 581–585.

    Article  CAS  Google Scholar 

  21. Shi, L.; Rohringer, P.; Ayala, P.; Saito, T.; Pichler, T. Carbon nanotubes from enhanced direct injection pyrolytic synthesis as templates for long linear carbon chain formation. Phys. Status Solidi B 2013, 250, 2611–2615.

    Article  CAS  Google Scholar 

  22. Shi, L.; Senga, R.; Suenaga, K.; Kataura, H.; Saito, T.; Paz, A. P.; Rubio, A.; Ayala, P.; Pichler, T. Toward confined carbyne with tailored properties. Nano Lett. 2021, 21, 1096–1101.

    Article  CAS  PubMed  Google Scholar 

  23. Cui, W. L.; Shi, L.; Cao, K. C.; Kaiser, U.; Saito, T.; Ayala, P.; Pichler, T. Isotopic labelling of confined carbyne. Angew. Chem., Int. Ed. 2021, 60, 9897–9901.

    Article  CAS  Google Scholar 

  24. Cui, W. L.; Simon, F.; Zhang, Y. F.; Shi, L.; Ayala, P.; Pichler, T. Ultra-clean isotope engineered double-walled carbon nanotubes as tailored hosts to trace the growth of carbyne. Adv. Funct. Mater. 2022, 32, 2206491.

    Article  CAS  Google Scholar 

  25. Pichler, T.; Kuzmany, H.; Kataura, H.; Achiba, Y. Metallic polymers of C60 inside single-walled carbon nanotubes. Phys. Rev. Lett. 2001, 87, 267401.

    Article  CAS  PubMed  Google Scholar 

  26. Zou, Y. G.; Liu, B. B.; Yao, M. G.; Hou, Y. Y.; Wang, L.; Yu, S. D.; Wang, P.; Li, B.; Zou, B.; Cui, T. et al. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure. Phys. Rev. B 2007, 76, 195417.

    Article  Google Scholar 

  27. Liu, X.; Pichler, T.; Knupfer, M.; Golden, M. S.; Fink, J.; Kataura, H.; Achiba, Y.; Hirahara, K.; Iijima, S. Filling factors, structural, and electronic properties of C60 molecules in single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 045419.

    Article  Google Scholar 

  28. Guan, L. H.; Li, H. J.; Shi, Z. J.; You, L. P.; Gu, Z. N. Standing or lying C70s encapsulated in carbon nanotubes with different diameters. Solid State Commun. 2005, 133, 333–336.

    Article  CAS  Google Scholar 

  29. Saito, Y.; Kondo, T.; Harada, S.; Kitaura, R.; Balois-Oguchi, M. V.; Hayazawa, N. Intermolecular interaction between single-walled carbon nanotubes and encapsulated molecules studied by polarization resonance Raman microscopy. J. Phys. Chem. B 2023, 127, 6726–6733.

    Article  CAS  PubMed  Google Scholar 

  30. Kuzmany, H.; Plank, W.; Hulman, M.; Kramberger, C.; Grüneis, A.; Pichler, T.; Peterlik, H.; Kataura, H.; Achiba, Y. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B 2001, 22, 307–320.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangzhou Basic and Applied Basic Research Foundation (No. 202201011790), the National Natural Science Foundation of China (No. 51902353), the Shanghai Rising-Star Program (No. 21QA1406300), the Fundamental Research Funds for the Central Universities, Sun Yatsen University (No. 22lgqb03), the Characteristic Innovation Project of Guangdong Provincial Department of Education (No. 2022KTSCX001), the State Key Laboratory of Optoelectronic Materials and Technologies (No. OEMT-2022-ZRC-01), and the Open Project of Guangdong Province Key Lab of Display Material and Technology (No. 2020B1212060030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kecheng Cao, Weili Cui or Lei Shi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, W., Tang, K. et al. A robust synthesis route of confined carbyne. Nano Res. 17, 6274–6280 (2024). https://doi.org/10.1007/s12274-024-6571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6571-z

Keywords

Navigation