Log in

Atomic-level unveiling secondary recrystallization enabled micro- and macroscopic polarization enhancement for piezo-photocatalytic oxygen activation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Piezoelectric semiconductors bear the bifunctional photocatalysis and piezocatalysis, while the absent or weak internal charge driving force severely restricts its catalytic activity. Develo** polarization strategy is desirable, and particularly understanding its mechanism from a microscopic perspective remains scanty. Herein, we report a secondary recrystallization approach to achieving the simultaneous micro- and macroscopic polarization enhancement on Bi2WO6 nanosheets for boosting piezophotocatalytic oxygen activation, and unravel the mechanism at an atom-level. The secondary recrystallization process not only results in a strengthened distortion of [WO6] octahedra with distortion index enhancement by ~ 20% for a single octahedron, but also enables lateral crystal growth of nanosheets along the ab plane (av. 50 to 180 nm), which separately allows the rise in dipole moment of unit cell (e.g., 1.63 D increase along a axis) and the stacking of the distorted [WO6] octahedron to accumulate the unit cell dipole, collectively contributing to the considerably strengthened spontaneous polarization and piezoelectricity. Besides, exposure of large-area {001} front facet enables more efficient capture and conversion of stress into piezo-potential. Therefore, the well-recrystallized Bi2WO6 nanosheets exhibit considerably promoted piezo-photocatalytic reactive oxygen species generation, given the decreased specific surface area. This work presents a feasible methodology to regulate inside-out polarization for guiding carriers transfer behavior, and may advance the solid understanding on the intrinsic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellwig, M. The chemistry of protein oxidation in food. Angew. Chem., Int. Ed. 2019, 58, 16742–16763.

    Article  CAS  Google Scholar 

  2. Cheng, Y.; Kong, X. P.; Chang, Y.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Gao, X. F.; Zhang, H. Y. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 2020, 32, 1908109.

    Article  CAS  Google Scholar 

  3. Wang, M.; Chang, M. Y.; Li, C. X.; Chen, Q.; Hou, Z. Y.; **ng, B. G.; Lin, J. Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic/Immunotherapy. Adv. Mater. 2022, 34, 2106010.

    Article  CAS  Google Scholar 

  4. Kalyane, D.; Choudhary, D.; Polaka, S.; Goykar, H.; Karanwad, T.; Rajpoot, K.; Kumar Tekade, R. Reactive oxygen nano-generators for cancer therapy. Prog. Mater Sci. 2022, 130, 100974.

    Article  CAS  Google Scholar 

  5. **e, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Z. S.; Cheng, M.; Liu, Y.; Wu, Z. W.; Gu, H. Y.; Huang, Y.; Zhang, L. Z.; Liu, X. Dual-atomic- site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem., Int. Ed. 2023, 62, e202301483.

    Article  CAS  Google Scholar 

  7. Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.

    Article  CAS  Google Scholar 

  8. Long, R.; Huang, H.; Li, Y. P.; Song, L.; **ong, Y. J. Palladium-based nanomaterials: A platform to produce reactive oxygen species for catalyzing oxidation reactions. Adv. Mater. 2015, 27, 7025–7042.

    Article  CAS  PubMed  Google Scholar 

  9. Li, Q.; Li, F. T. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915.

    Article  CAS  Google Scholar 

  10. Zhao, Y. B.; Ma, W. H.; Li, Y.; Ji, H. W.; Chen, C. C.; Zhu, H. Y.; Zhao, J. C. The surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem., Int. Ed. 2012, 51, 3188–3192.

    Article  CAS  Google Scholar 

  11. Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; **ao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, X. S.; Luo, X.; Zhang, X. D.; **e, J. F.; **, S.; Wang, H.; Zheng, X. S.; Wu, X. J.; **e, Y. Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.

    Article  Google Scholar 

  14. Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, S. Y.; Ding, X.; Zhang, X. H.; Pang, H.; Hai, X.; Zhan, G. M.; Zhou, W.; Song, H.; Zhang, L. Z.; Chen, H. et al. In situ carbon homogeneous do** on ultrathin bismuth molybdate: A dual-purpose strategy for efficient molecular oxygen activation. Adv. Funct. Mater. 2017, 27, 1703923.

    Article  Google Scholar 

  16. Zhang, D. P.; Li, Y. X.; Wang, P. F.; Qu, J. Y.; Zhan, S. H.; Li, Y. Regulating spin polarization through cationic vacancy defects in Bi4Ti3O12 for enhanced molecular oxygen activation. Angew. Chem., Int. Ed. 2023, 62, e202303807.

    Article  CAS  Google Scholar 

  17. Di, G. L.; Wang, L. L.; Li, X. D.; Zhao, X. L.; Yang, G. P.; Huang, L.; Chen, Z. F.; Crittenden, J. Metallic Bi and oxygen vacancy dual active sites enable efficient oxygen activation: Facet-dependent effect and interfacial synergy. Appl. Catal. B Environ 2023, 325, 122349.

    Article  CAS  Google Scholar 

  18. Dai, B. Y.; Biesold, G. M.; Zhang, M.; Zou, H. Y.; Ding, Y.; Wang, Z. L.; Lin, Z. Q. Piezo- phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem. Soc. Rev. 2021, 50, 13646–13691.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, L. X.; Wang, K.; Jia, Y. Q.; Fang, L. P.; Han, C.; Li, J. Q.; Shao, Z. P.; Li, X. Y.; Qiu, J. S.; Liu, S. M. Self-assembled LaFeO3/ZnFe2O4/La2O3 ultracompact hybrids with enhanced piezo-phototronic effect for oxygen activation in ambient conditions. Adv. Funct. Mater. 2022, 32, 2205121.

    Article  CAS  Google Scholar 

  20. Liu, W.; Wang, P. F.; Ao, Y. H.; Chen, J.; Gao, X.; Jia, B. H.; Ma, T. Y. Directing charge transfer in a chemical-bonded BaTiO3@ReS2 schottky heterojunction for piezoelectric enhanced photocatalysis. Adv. Mater. 2022, 34, 2202508.

    Article  CAS  Google Scholar 

  21. Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Nanochemistry-derived Bi2WO6 nanostructures: Towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 2014, 43, 5276–5287.

    Article  CAS  PubMed  Google Scholar 

  22. Yi, H.; Qin, L.; Huang, D. L.; Zeng, G. M.; Lai, C.; Liu, X. G.; Li, B. S.; Wang, H.; Zhou, C. Y.; Huang, F. L. et al. Nano-structured bismuth tungstate with controlled morphology: Fabrication, modification, environmental application and mechanism insight. Chem. Eng. J. 2019, 358, 480–496.

    Article  CAS  Google Scholar 

  23. Hu, J. F.; Zhang, J. Z.; Wang, X. H.; Luo, J.; Zhang, Z. J.; Shen, Z. J. A general mechanism of grain growth- II: Experimental. J. Materiomics 2021, 7, 1014–1021.

    Article  Google Scholar 

  24. Zhou, Y. G.; Zhang, Y. F.; Lin, M. S.; Long, J. L.; Zhang, Z. Z.; Lin, H. X.; Wu, J. C. S.; Wang, X. X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.

    Article  PubMed  Google Scholar 

  25. Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

    Article  CAS  Google Scholar 

  26. Wang, C. Y.; Hu, C.; Chen, F.; Li, H. T.; Zhang, Y. H.; Ma, T. Y.; Huang, H. W. Polar layered bismuth-rich oxyhalide piezoelectrics Bi4O5X2 (X = Br, I): Efficient piezocatalytic pure water splitting and interlayer anion-dependent activity. Adv. Funct. Mater. 2023, 33, 2301144.

    Article  CAS  Google Scholar 

  27. Hu, C.; Huang, H. W.; Chen, F.; Zhang, Y. H.; Yu, H.; Ma, T. Y. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 2020, 30, 1908168.

    Article  CAS  Google Scholar 

  28. Ren, P.; Zhang, T.; Jain, N.; Ching, H. Y. V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L. et al. An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the water oxidation reaction (WOR). J. Am. Chem. Soc. 2023, 145, 16584–16596.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, K.; Han, C.; Li, J. Q.; Qiu, J. S.; Sunarso, J.; Liu, S. M. The mechanism of piezocatalysis: Energy band theory or screening charge effect. Angew. Chem., Int. Ed. 2022, 61, e202110429.

    Article  CAS  Google Scholar 

  30. Scherrer, P. Estimation of the size and internal structure of colloidal particles by means of röntgen rays. Nachr. Ges. Wiss. Göttingen 1918, 2, 98–100.

    Google Scholar 

  31. Langford, J. I.; Wilson, A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 1978, 11, 102–113.

    Article  CAS  Google Scholar 

  32. Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534.

    Article  CAS  PubMed  Google Scholar 

  33. Ma, H. Q.; Yang, W. Y.; Gao, S.; Geng, W. R.; Lu, Y. L.; Zhou, C. L.; Shang, J. K.; Shi, T.; Li, Q. Superior photopiezocatalytic performance by enhancing spontaneous polarization through post-synthesis structure distortion in ultrathin Bi2WO6 nanosheet polar photocatalyst. Chem. Eng. J. 2023, 455, 140471.

    Article  CAS  Google Scholar 

  34. Hu, C.; Chen, F.; Huang, H. W. Ferroelectric polarization modulated facet-selective charge separation in Bi4NbO8Cl single crystal for boosting visible-light driven bifunctional water splitting. Angew. Chem., Int. Ed. 2023, 62, e202312895.

    Article  CAS  Google Scholar 

  35. Zhang, L. W.; Wang, Y. J.; Cheng, H. Y.; Yao, W. Q.; Zhu, Y. F. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv. Mater. 2009, 21, 1286–1290.

    Article  CAS  Google Scholar 

  36. Zhang, L. W.; Man, Y.; Zhu, Y. F. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal. 2011, 1, 841–848.

    Article  CAS  Google Scholar 

  37. Mączka, M.; Macalik, L.; Hermanowicz, K.; Kępiński, L.; Tomaszewski, P. Phonon properties of nanosized bismuth layered ferroelectric material-Bi2WO6. J. Raman Spectrosc. 2010, 41, 1059–1066.

    Article  Google Scholar 

  38. Djani, H.; Hermet, P.; Ghosez, P. First-principles characterization of the P21 ab ferroelectric phase of Aurivillius Bi2WO6. J. Phys. Chem. C 2014, 118, 13514–13524.

    Article  CAS  Google Scholar 

  39. Lu, C. H.; Li, X. R.; Wu, Q.; Li, J.; Wen, L.; Dai, Y.; Huang, B. B.; Li, B. J.; Lou, Z. Z. Constructing surface plasmon resonance on Bi2WO6 to boost high-selective CO2 reduction for methane. ACS Nano 2021, 15, 3529–3539.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y. H.; Hu, J. C.; Ge, T.; Chen, F.; Lu, Y.; Chen, R. H.; Zhang, H. J.; Ye, B. J.; Wang, S. Y.; Zhang, Y. H. et al. Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: Strong local internal electric field and reformed basic sites boosting CO2 photoreduction. Adv. Mater. 2023, 35, 2302538.

    Article  CAS  Google Scholar 

  41. Wu, L. K.; Tang, L. M.; Zhai, Y. Z.; Zhang, Y. L.; Sun, J. J.; Hu, D.; Pan, Z. B.; Su, Z.; Zhang, Y.; Liu, J. J. Enhanced energy-storage performance in BNT-based lead-free dielectric ceramics via introducing SrTi0.875Nb0.1O3. J. Materiomics 2022, 8, 537–544.

    Article  Google Scholar 

  42. Liu, S.; Feng, W. W.; Li, J. H.; Zhao, C. C.; Hu, C.; He, B.; Bao, Z. D.; Luan, X. Z. Achieving high energy storage density and efficiency simultaneously in Sr(Nb0.5Al0.5)O3 modified BiFeO3 based lead-free ceramics. Chem. Eng. J. 2023, 451, 138916.

    Article  CAS  Google Scholar 

  43. Yang, B. B.; Zhang, Q. H.; Huang, H. B.; Pan, H.; Zhu, W. X.; Meng, F. Q.; Lan, S.; Liu, Y. Q.; Wei, B.; Liu, Y. Q. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 2023, 8, 956–964.

    Article  CAS  Google Scholar 

  44. Qu, H. W.; Li, Y. C. Giant enhancement of exciton radiative lifetime by ferroelectric polarization: The case of monolayer TiOCl2. Phys. Rev. B 2023, 107, 235407.

    Article  CAS  Google Scholar 

  45. Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.

    Article  CAS  Google Scholar 

  46. **ng, Z.; Hu, J.; Ma, M.; Lin, H.; An, Y. M.; Liu, Z. H.; Zhang, Y.; Li, J. Y.; Yang, S. H. From one to two: In situ construction of an ultrathin 2D-2D closely bonded heterojunction from a single-phase monolayer nanosheet. J. Am. Chem. Soc. 2019, 141, 19715–19727.

    Article  CAS  PubMed  Google Scholar 

  47. Yang, J.; Wang, F.; Guo, J. F.; Wang, Y. R.; Jiang, C. X.; Li, S. H.; Cai, Y. C.; Zhan, X. Y.; Liu, X. F.; Cheng, Z. H. et al. Ultrasensitive ferroelectric semiconductor phototransistors for photon-level detection. Adv. Funct. Mater. 2022, 32, 2205468.

    Article  CAS  Google Scholar 

  48. Zhong, Y.; Wu, C. L.; Chen, D. M.; Zhang, J. Z.; Feng, Y. M.; Xu, K.; Hao, W. C.; Ding, H.; Lv, G. C.; Du, Y. et al. Design of lateral and vertical Bi4O5I2/BiOCl heterojunctions with different charge migration pathway for efficient photoredox activity. Appl. Catal. B Environ 2023, 329, 122554.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (No. 2022YFB3803600), the National Natural Science Foundation of China (Nos. 52272244 and 51972288), the Fundamental Research Funds for the Central Universities (No. 2652022202), and 2021 Graduate Innovation Fund Project of China University of Geosciences, Bei**g (No. ZY2021YC006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Huang.

Electronic Supplementary Material

12274_2024_6518_MOESM1_ESM.pdf

Atomic-level unveiling secondary recrystallization enabled micro- and macroscopic polarization enhancement for piezo-photocatalytic oxygen activation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Zhu, Z., Ge, W. et al. Atomic-level unveiling secondary recrystallization enabled micro- and macroscopic polarization enhancement for piezo-photocatalytic oxygen activation. Nano Res. 17, 5040–5049 (2024). https://doi.org/10.1007/s12274-024-6518-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6518-4

Keywords

Navigation