Log in

High precision patternable liquid metal based conductor and adhesive substrate enabled stretchable hybrid systems

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable hybrid systems have been attracting tremendous attention for their essential role in soft robotics, on-skin electronics, and implantable devices. Both rigid and soft functional modules are typically required in those devices. Consequently, ensuring stable electrical contact between rigid and soft modules is a vital part. Here, we propose a simple, universal, and scalable strategy for the stretchable hybrid system through a highly precise printable liquid metal particle-based conductor and adhesive fluorine rubber substrate. The properties of liquid metal particle-based conductors could be easily tuned to realize high-precision patterning, large-scale printing, and the ability to print on various substrates. Additionally, the fluorine rubber substrate could form strong interfacial adhesion with various components and materials through simply pressing and heating, hence enabling stable electrical contact. Furthermore, we prepared a stretchable hybrid light-emitting diode (LED) display system and employed it in on-skin visualization of pressure levels, which perfectly combined rigid and soft modules, thus demonstrating the promising potential applications in complex multifunctional stretchable hybrid systems for emerging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hegde, C.; Su, J. T.; Tan, J. M. R.; He, K.; Chen, X. D.; Magdassi, S. Sensing in soft robotics. ACS Nano 2023, 17, 15277–15307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, Y.; Bao, R. R.; Tao, J.; Li, J.; Dong, M.; Pan, C. F. Recent progress in tactile sensors and their applications in intelligent systems. Sci. Bull. 2020, 65, 70–88.

    Article  Google Scholar 

  3. Bao, R. R.; Tao, J.; Zhao, J.; Dong, M.; Li, J.; Pan, C. F. Integrated intelligent tactile system for a humanoid robot. Sci. Bull. 2023, 68, 1027–1037.

    Article  Google Scholar 

  4. Zhou, Q. T.; Deng, S. J.; Gao, A. L.; Wang, B. Y.; Lai, J. X.; Pan, J.; Huang, L.; Pan, C. F.; Meng, G. W.; **a, F. Triboelectric nanogenerator with dynamic electrode for geological disaster and fall-down self-powered alarm system. Adv. Funct. Mater. 2023, 33, 2306619.

    Article  CAS  Google Scholar 

  5. Jiang, Y.; Ji, S. B.; Sun, J.; Huang, J. P.; Li, Y. H.; Zou, G. J.; Salim, T.; Wang, C. X.; Li, W. L.; **, H. R. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614, 456–462.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. C.; Tan, Y. R.; Lao, J. Z.; Gao, H. J.; Yu, J. Hydrogels for flexible electronics. ACS Nano 2023, 17, 9681–9693.

    Article  CAS  PubMed  Google Scholar 

  7. Li, J.; Bao, R. R.; Tao, J.; Dong, M.; Zhang, Y. F.; Fu, S.; Peng, D. F.; Pan, C. F. Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors. Appl. Phys. Rev. 2020, 7, 011404.

    Article  CAS  Google Scholar 

  8. Wu, W. Q.; Han, X.; Li, J.; Wang, X. D.; Zhang, Y. F.; Huo, Z. H.; Chen, Q. S.; Sun, X. D.; Xu, Z. S.; Tan, Y. W. et al. Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 2021, 33, 2006006.

    Article  CAS  Google Scholar 

  9. Yu, Y.; Li, J. H.; Solomon, S. A.; Min, J. H.; Tu, J. B.; Guo, W.; Xu, C. H.; Song, Y.; Gao, W. All-printed soft human–machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, J.; Yuan, Z. Q.; Han, X.; Wang, C. F.; Huo, Z. H.; Lu, Q. C.; **ong, M. L.; Ma, X. L.; Gao, W. C.; Pan, C. F. Biologically inspired stretchable, multifunctional, and 3D electronic skin by strain visualization and triboelectric pressure sensing. Small Sci. 2022, 2, 2100083.

    Article  CAS  Google Scholar 

  11. Tao, J.; Dong, M.; Li, L.; Wang, C. F.; Li, J.; Liu, Y.; Bao, R. R.; Pan, C. F. Real-time pressure map** smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, 1706738.

    Article  Google Scholar 

  13. Deng, J.; Yuk, H.; Wu, J. J.; Varela, C. E.; Chen, X. Y.; Roche, E. T.; Guo, C. F.; Zhao, X. H. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 2021, 20, 229–236.

    Article  CAS  PubMed  Google Scholar 

  14. Xue, Y.; Zhang, J.; Chen, X. M.; Zhang, J. J.; Chen, G. D.; Zhang, K.; Lin, J. S.; Guo, C. F.; Liu, J. Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv. Funct. Mater. 2021, 31, 2106446.

    Article  CAS  Google Scholar 

  15. Li, G.; Huang, K. X.; Deng, J.; Guo, M. X.; Cai, M. K.; Zhang, Y.; Guo, C. F. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 2022, 34, 2200261.

    Article  CAS  Google Scholar 

  16. Haque, A. B. M. T.; Ho, D. H.; Hwang, D.; Tutika, R.; Lee, C.; Bartlett, M. D. Electrically conductive liquid metal composite adhesives for reversible bonding of soft electronics. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202304101.

  17. Song, H. L.; Luo, G. Q.; Ji, Z. Y.; Bo, R. H.; Xue, Z. G.; Yan, D. J.; Zhang, F.; Bai, K.; Liu, J. X.; Cheng, X. et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 2022, 8, eabm3785.

    Article  Google Scholar 

  18. Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu, N. S.; Yoon, J.; Suo, Z. G. Delamination of stiff islands patterned on stretchable substrates. Int. J. Mater. Res. 2007, 98, 717–722.

    Article  CAS  Google Scholar 

  20. Zhao, Z. H.; Fu, H. R.; Tang, R. T.; Zhang, B. C.; Chen, Y. M.; Jiang, J. Q. Failure mechanisms in flexible electronics. Int. J. Smart Nano Mater. 2023, 14, 510–565.

    Article  Google Scholar 

  21. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

    Article  PubMed  Google Scholar 

  23. Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 2015, 14, 785–789.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. F.; Huo, Z. H.; Wang, X. D.; Han, X.; Wu, W. Q.; Wan, B. S.; Wang, H.; Zhai, J. Y.; Tao, J.; Pan, C. F. et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat. Commun. 2020, 11, 5629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lacour, S. P.; Chan, D.; Wagner, S.; Li, T.; Suo, Z. G. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 2006, 88, 204103.

    Article  Google Scholar 

  26. Jiang, Z.; Chen, N.; Yi, Z. G.; Zhong, J. W.; Zhang, F. L.; Ji, S. B.; Liao, R.; Wang, Y.; Li, H. C.; Liu, Z. H. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 2022, 5, 784–793.

    Article  CAS  Google Scholar 

  27. Qi, D. P.; Liu, Z. Y.; Liu, Y.; Jiang, Y.; Leow, W. R.; Pal, M.; Pan, S. W.; Yang, H.; Wang, Y.; Zhang, X. Q. et al. Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 2017, 29, 1702800.

    Article  Google Scholar 

  28. Chen, S.; Hu, K. M.; Yan, S. Z.; Ma, T. J.; Deng, X. L.; Zhang, W. M.; Yin, J.; Jiang, X. S. Dynamic metal patterns of wrinkles based on photosensitive layers. Sci. Bull. 2022, 67, 2186–2195.

    Article  CAS  Google Scholar 

  29. He, J.; Zhou, R. H.; Zhang, Y. F.; Gao, W. C.; Chen, T.; Mai, W. J.; Pan, C. F. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 2022, 32, 2107281.

    Article  CAS  Google Scholar 

  30. Jiang, Y. W.; Zhang, Z. T.; Wang, Y. X.; Li, D. L.; Coen, C. T.; Hwaun, E.; Chen, G.; Wu, H. C.; Zhong, D. L.; Niu, S. M. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 2022, 375, 1411–1417.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, J.; Liu, X. H.; Du, Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT:PSS thermoelectric composites. J. Materiom. 2022, 8, 1213–1217.

    Article  Google Scholar 

  32. Du, X. J.; Yang, L. Y.; Liu, N. Recent progress on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) bioelectrodes. Small Sci. 2023, 3, 2300008.

    Article  CAS  Google Scholar 

  33. Gao, N. W.; Pan, C. F. Intelligent ion gels: Design, performance, and applications. SmartMat 2024, 5, e1215.

    Article  CAS  Google Scholar 

  34. Gao, N. W.; Huang, J. Y.; Chen, Z. W.; Liang, Y. G.; Zhang, L.; Peng, Z. C.; Pan, C. F. Biomimetic ion channel regulation for temperature-pressure decoupled tactile perception. Small 2024, 20, 2302440.

    Article  CAS  Google Scholar 

  35. Ge, G.; Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano 2020, 14, 218–228.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng, L. J.; Zhu, M. M.; Wu, B. H.; Li, Z. L.; Sun, S. T.; Wu, P. Y. Conductance-stable liquid metal sheath–core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 2021, 7, eabg4041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hou, X. J.; Zhong, J. X.; Yang, C. J.; Yang, Y.; He, J.; Mu, J. L.; Geng, W. P.; Chou, X. J. A high-performance, single-electrode and stretchable piezo-triboelectric hybrid patch for omnidirectional biomechanical energy harvesting and motion monitoring. J. Materiom. 2022, 8, 958–966.

    Article  Google Scholar 

  38. Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

    Article  CAS  Google Scholar 

  39. Matsuhisa, N.; Inoue, D.; Zalar, P.; **, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

    Article  CAS  PubMed  Google Scholar 

  40. Jung, D.; Lim, C.; Park, C.; Kim, Y.; Kim, M.; Lee, S.; Lee, H.; Kim, J. H.; Hyeon, T.; Kim, D. H. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 2022, 34, 2200980.

    Article  CAS  Google Scholar 

  41. Zhou, K. K.; Zhao, Y.; Sun, X. P.; Yuan, Z. Q.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 2020, 70, 104546.

    Article  CAS  Google Scholar 

  42. Zhou, K. K.; Xu, W. J. H.; Yu, Y. F.; Zhai, W.; Yuan, Z. Q.; Dai, K.; Zheng, G. Q.; Mi, L. W.; Pan, C. F.; Liu, C. T. et al. Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact–noncontact sensing. Small 2021, 17, 2100542.

    Article  CAS  Google Scholar 

  43. Yu, Z. B.; Niu, X. F.; Liu, Z. T.; Pei, Q. B. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989–3994.

    Article  CAS  PubMed  Google Scholar 

  44. Xu, H. Y.; Tao, J.; Liu, Y.; Mo, Y. P.; Bao, R. R.; Pan, C. F. Fully fibrous large-area tailorable triboelectric nanogenerator based on solution blow spinning technology for energy harvesting and self-powered sensing. Small 2022, 18, 2202477.

    Article  CAS  Google Scholar 

  45. Lu, Y.; Qu, X. Y.; Zhao, W.; Ren, Y. F.; Si, W. L.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020, 2020, 2038560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, H. F.; Xuan, J. Y.; Zhang, Q.; Sun, M. L.; Jia, F. C.; Wang, X. M.; Yin, G. C.; Lu, S. Y. Strategies and challenges for enhancing performance of MXene-based gas sensors: A review. Rare Met. 2022, 41, 3976–3999.

    Article  CAS  Google Scholar 

  47. Han, X.; Qiu, X. Y.; Zong, M.; Hao, J. H. Assembled MXene macrostructures for multifunctional polymer nanocomposites. Small Struct. 2023, 4, 2300090.

    Article  CAS  Google Scholar 

  48. Ren, J.; Zhang, W. J.; Wang, Y. B.; Wang, Y. X.; Zhou, J.; Dai, L. M.; Xu, M. A graphene rheostat for highly durable and stretchable strain sensor. InfoMat 2019, 1, 396–406.

    Article  CAS  Google Scholar 

  49. Niu, H. S.; Li, N.; Kim, E. S.; Shin, Y. K.; Kim, N. Y.; Shen, G. Z.; Li, Y. Advances in advanced solution-synthesis-based structural materials for tactile sensors and their intelligent applications. InfoMat 2024, 6, e12500.

    Article  Google Scholar 

  50. Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X. Y.; Zhao, X. H. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hwang, H.; Kong, M.; Kim, K.; Park, D.; Lee, S.; Park, S.; Song, H. J.; Jeong, U. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Sci. Adv. 2021, 7, eabh0171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yuk, H.; Zhang, T.; Lin, S. T.; Parada, G. A.; Zhao, X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196.

    Article  CAS  PubMed  Google Scholar 

  53. Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem., Int. Ed. 2019, 58, 696–714.

    Article  CAS  Google Scholar 

  54. Cheng, M. J.; Shi, F.; Li, J. S.; Lin, Z. F.; Jiang, C.; **ao, M.; Zhang, L. Q.; Yang, W. T.; Nishi, T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater. 2014, 26, 3009–3013.

    Article  CAS  PubMed  Google Scholar 

  55. Li, X.; Deng, Y.; Lai, J. L.; Zhao, G.; Dong, S. Y. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives. J. Am. Chem. Soc. 2020, 142, 5371–5379.

    Article  CAS  PubMed  Google Scholar 

  56. Mredha, M. T. I.; Le, H. H.; Cui, J. X.; Jeon, I. Double-hydrophobic-coating through quenching for hydrogels with strong resistance to both drying and swelling. Adv. Sci. 2020, 7, 1903145.

    Article  CAS  Google Scholar 

  57. Zhang, Y.; Yang, J. L.; Hou, X. Y.; Li, G.; Wang, L.; Bai, N. N.; Cai, M. K.; Zhao, L. Y.; Wang, Y.; Zhang, J. M. et al. Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 2022, 13, 1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 2017, 29, 1603382.

    Article  Google Scholar 

  59. Lee, W.; Kim, H.; Kang, I.; Park, H.; Jung, J.; Lee, H.; Park, H.; Park, J. S.; Yuk, J. M.; Ryu, S. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 2022, 378, 637–641.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (Nos. 52125205, U20A20166, and 52192614), National Key Research and Development Program of China (Nos. 2021YFB3200302 and 2021YFB3200304), Natural Science Foundation of Bei**g Municipality (No. 2222088), Shenzhen Science and Technology Program (No. KQTD20170810105439418), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caofeng Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Huang, J., Li, Z. et al. High precision patternable liquid metal based conductor and adhesive substrate enabled stretchable hybrid systems. Nano Res. 17, 5595–5603 (2024). https://doi.org/10.1007/s12274-024-6516-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6516-6

Keywords

Navigation