Log in

Advanced nanofabrication for elastic inorganic aerogels

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inorganic aerogels with low density, high porosity, large specific surface area, and superior mechanical properties are excellent candidate materials in fields such as thermal management, energy, catalysis, and biomedical applications. A comprehensive overview of existing elastic inorganic aerogels is provided, covering their structural units, preparation methods, mechanical performances, and applications. Meanwhile, based on the constituent building blocks and microstructures, a detailed analysis of the mechanical properties and guidelines for elastic design of aerogels is presented. Concluding with a succinct summary of prospective developmental direction, this review deliberates on the challenges and potential opportunities of elastic inorganic aerogels, with the intent of providing a versatile platform for designing new types of elastic inorganic aerogels for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. T.; Ding, B. Ultralight and superelastic ceramic nanofibrous aerogels: A new vision of an ancient material. Sci. Bull. 2023, 68, 753–755.

    Article  CAS  Google Scholar 

  2. Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

    Article  CAS  Google Scholar 

  3. Olsson, R. T.; Azizi Samir, M. A. S.; Salazar-Alvarez, G.; Belova, L.; Ström, V.; Berglund, L. A.; Ikkala, O.; Nogués, J.; Gedde, U. W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 2010, 5, 584–588.

    Article  CAS  Google Scholar 

  4. Du, R.; Fan, X. L.; **, X. Y.; Hübner, R.; Hu, Y.; Eychmüller, A. Emerging noble metal aerogels: State of the art and a look forward. Matter 2019, 1, 39–56.

    Article  Google Scholar 

  5. Yan, Z. S.; Liu, X. Y.; Ding, B.; Yu, J. Y.; Si, Y. Interfacial engineered superelastic metal-organic framework aerogels with vander-Waals barrier channels for nerve agents decomposition. Nat. Commun. 2023, 14, 2116.

    Article  CAS  Google Scholar 

  6. Ziegler, C.; Wolf, A.; Liu, W.; Herrmann, A. K.; Gaponik, N.; Eychmüller, A. Modern inorganic aerogels. Angew. Chem., Int. Ed. 2017, 56, 13200–13221.

    Article  CAS  Google Scholar 

  7. Xu, X.; Fu, S. B.; Guo, J. R.; Li, H.; Huang, Y.; Duan, X. F. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 2021, 42, 162–177.

    Article  CAS  Google Scholar 

  8. Zhuang, L.; Lu, D.; Zhang, J. J.; Guo, P. F.; Su, L.; Qin, Y. B.; Zhang, P.; Xu, L.; Niu, M.; Peng, K. et al. Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance. Nat. Commun. 2023, 14, 3178.

    Article  CAS  Google Scholar 

  9. Shi, Q. R.; Zhu, C. Z.; Tian, M. K.; Su, D.; Fu, M. S.; Engelhard, M. H.; Chowdhury, I.; Feng, S.; Du, D.; Lin, Y. H. Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation. Nano Energy 2018, 53, 206–212.

    Article  CAS  Google Scholar 

  10. Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.

    Article  CAS  Google Scholar 

  11. Gonçalves, W.; Morthomas, J.; Chantrenne, P.; Perez, M.; Foray, G.; Martin, C. L. Elasticity and strength of silica aerogels: A molecular dynamics study on large volumes. Acta Mater. 2018, 145, 165–174.

    Article  Google Scholar 

  12. Matter, F.; Luna, A. L.; Niederberger, M. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today 2020, 30, 100827.

    Article  CAS  Google Scholar 

  13. Wang, L. B.; Song, G. M.; Qiao, X. X.; **ong, G.; Liu, Y. M.; Zhang, J. C.; Guo, R. L.; Chen, G. X.; Zhou, Z.; Li, Q. F. Facile fabrication of flexible, robust, and superhydrophobic hybrid aerogel. Langmuir 2019, 35, 8692–8698.

    Article  CAS  Google Scholar 

  14. Ghica, M. E.; Almeida, C. M. R.; Fonseca, M.; Portugal, A.; Durães, L. Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems. Polymers 2020, 12, 1278.

    Article  CAS  Google Scholar 

  15. Peng, F.; Jiang, Y. G.; Feng, J.; Cai, H. F.; Feng, J. Z.; Li, L. J. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402.

    Article  CAS  Google Scholar 

  16. Huang, Y. J.; He, S.; Chen, G. N.; Shi, X. J.; Yang, X. B.; Dai, H. M.; Chen, X. F. Mechanical reinforced fiber needle felt/silica aerogel composite with its flammability. J. Sol-Gel Sci. Technol. 2018, 88, 129–140.

    Article  CAS  Google Scholar 

  17. Li, J.; Lei, Y.; Xu, D. D.; Liu, F. H.; Li, J. W.; Sun, A. H.; Guo, J. J.; Xu, G. J. Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. J. Sol-Gel Sci. Technol. 2017, 82, 702–711.

    Article  CAS  Google Scholar 

  18. Dou, L. Y.; Cheng, X. T.; Zhang, X. X.; Si, Y.; Yu, J. Y.; Ding, B. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 2020, 8, 7775–7783.

    Article  CAS  Google Scholar 

  19. Woignier, T.; Primera, J.; Alaoui, A.; Etienne, P.; Despestis, F.; Calas-Etienne, S. Mechanical properties and brittle behavior of silica aerogels. Gels 2015, 1, 256–275.

    Article  Google Scholar 

  20. Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

    Article  CAS  Google Scholar 

  21. Riedle, S.; Wills, J. W.; Miniter, M.; Otter, D. E.; Singh, H.; Brown, A. P.; Micklethwaite, S.; Rees, P.; Jugdaohsingh, R.; Roy, N. C. et al. A murine oral-exposure model for Nano- and micro-particulates: Demonstrating human relevance with food-grade titanium dioxide. Small 2020, 16, 2000486.

    Article  CAS  Google Scholar 

  22. Zhu, Y.; Liu, X. L.; Hu, Y. L.; Wang, R.; Chen, M.; Wu, J. H.; Wang, Y. Y.; Kang, S.; Sun, Y.; Zhu, M. X. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environ. Res. 2019, 174, 54–60.

    Article  CAS  Google Scholar 

  23. Zhang, M.; Wang, Y.; Zhang, Y. Y.; Song, J.; Si, Y.; Yan, J. H.; Ma, C. L.; Liu, Y. T.; Yu, J. Y.; Ding, B. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability. Angew. Chem., Int. Ed. 2020, 59, 23252–23260.

    Article  CAS  Google Scholar 

  24. Su, L.; Niu, M.; Lu, D.; Cai, Z. X.; Li, M. Z.; Wang, H. J. A review on the emerging resilient and multifunctional ceramic aerogels. J. Mater. Sci. Technol. 2021, 75, 1–13.

    Article  CAS  Google Scholar 

  25. Quero, F.; Rosenkranz, A. Mechanical performance of binary and ternary hybrid MXene/nanocellulose hydro- and aerogels-a critical review. Adv. Mater. Interfaces 2021, 8, 2100952.

    Article  CAS  Google Scholar 

  26. Moner-Girona, M.; Martínez, E.; Esteve, J.; Roig, A.; Solanas, R.; Molins, E. Micromechanical properties of carbon-silica aerogel composites. Appl. Phys. A 2002, 74, 119–122.

    Article  CAS  Google Scholar 

  27. Chang, X. Y.; Cheng, X. T.; Zhang, H.; Li, W. J.; He, L. J.; Yin, X.; Liu, X. Y.; Yu, J. Y.; Liu, Y. T.; Ding, B. Superelastic carbon aerogels: An emerging material for advanced thermal protection in extreme environments. Adv. Funct. Mater. 2023, 33, 2215168.

    Article  CAS  Google Scholar 

  28. Yan, M. Y.; Cheng, X. D.; Shi, L.; Pan, Y. L.; He, P.; Zhang, Z. X.; Lun, Z.; Fu, Y. Y.; Zhang, H. P. Bioinspired SiC aerogels for super thermal insulation and adsorption with super-elasticity over 100,000 times compressions. Chem. Eng. J. 2023, 455, 140616.

    Article  CAS  Google Scholar 

  29. Benad, A.; Jürries, F.; Vetter, B.; Klemmed, B.; Hübner, R.; Leyens, C.; Eychmüller, A. Mechanical properties of metal oxide aerogels. Chem. Mater. 2018, 30, 145–152.

    Article  CAS  Google Scholar 

  30. Rewatkar, P. M.; Taghvaee, T.; Saeed, A. M.; Donthula, S.; Mandal, C.; Chandrasekaran, N.; Leventis, T.; Shruthi, T. K.; Sotiriou-Leventis, C.; Leventis, N. Sturdy, monolithic SiC and Si3N4 aerogels from compressed polymer-cross-linked silica xerogel powders. Chem. Mater. 2018, 30, 1635–1647.

    Article  CAS  Google Scholar 

  31. Yan, M. Y.; Zhang, H. P.; Fu, Y. Y.; Pan, Y. L.; Lun, Z.; Zhang, Z. X.; He, P.; Cheng, X. D. Implementing an air suction effect induction strategy to create super thermally insulating and superelastic SiC aerogels. Small 2022, 18, 2201039.

    Article  CAS  Google Scholar 

  32. An, L.; Wang, J. Y.; Petit, D.; Armstrong, J. N.; Hanson, K.; Hamilton, J.; Souza, M.; Zhao, D. H.; Li, C. N.; Liu, Y. Z. et al. An all-ceramic, anisotropic, and flexible aerogel insulation material. Nano Lett. 2020, 20, 3828–3835.

    Article  CAS  Google Scholar 

  33. Shu, X. F.; Yan, S. C.; Fang, B.; Song, Y. N.; Zhao, Z. J. A 3D multifunctional nitrogen-doped RGO-based aerogel with silver nanowires assisted self-supporting networks for enhanced electromagnetic wave absorption. Chem. Eng. J. 2023, 451, 138825.

    Article  CAS  Google Scholar 

  34. Li, X.; Zhu, L. T.; Kasuga, T.; Nogi, M.; Koga, H. Frequency-tunable and absorption/transmission-switchable microwave absorber based on a chitin-nanofiber-derived elastic carbon aerogel. Chem. Eng. J. 2023, 469, 144010.

    Article  CAS  Google Scholar 

  35. Deng, Z. J.; Gao, C. Q.; Feng, S.; Zhang, H. F.; Liu, Y. W.; Zhu, Y.; Wang, J. Z.; **ang, X.; **e, H. Y. Highly compressible, light-weight and robust Nitrogen-doped graphene composite aerogel for sensitive pressure sensors. Chem. Eng. J. 2023, 471, 144790.

    Article  CAS  Google Scholar 

  36. Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 2023, 452, 139376.

    Article  CAS  Google Scholar 

  37. Yang, G. H.; Huang, Z. Z.; McCarthy, A.; Huang, Y. Y.; Pan, J. Y.; Chen, S. X.; Wan, W. B. Super-elastic carbonized mushroom aerogel for management of uncontrolled hemorrhage. Adv. Sci. 2023, 10, 2207347.

    Article  CAS  Google Scholar 

  38. Xu, X. J.; Wang, R. R.; Nie, P.; Cheng, Y.; Lu, X. Y.; Shi, L. J.; Sun, J. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces 2017, 9, 14273–14280.

    Article  CAS  Google Scholar 

  39. Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem., Int. Ed. 2014, 53, 4561–4566.

    Article  CAS  Google Scholar 

  40. Jung, S. M.; Preston, D. J.; Jung, H. Y.; Deng, Z. T.; Wang, E. N.; Kong, J. Porous Cu nanowire aerosponges from one-step assembly and their applications in heat dissipation. Adv. Mater. 2016, 28, 1413–1419.

    Article  CAS  Google Scholar 

  41. Qian, F.; Troksa, A.; Fears, T. M.; Nielsen, M. H.; Nelson, A. J.; Baumann, T. F.; Kucheyev, S. O.; Han, T. Y. J.; Bagge-Hansen, M. Gold aerogel monoliths with tunable ultralow densities. Nano Lett. 2020, 20, 131–135.

    Article  CAS  Google Scholar 

  42. Yan, P. L.; Brown, E.; Su, Q.; Li, J.; Wang, J.; Xu, C. X.; Zhou, C.; Lin, D. 3D printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable Poisson’s ratio. Small 2017, 13, 1701756

    Article  Google Scholar 

  43. Qian, F.; Lan, P. C.; Freyman, M. C.; Chen, W.; Kou, T. Y.; Olson, T. Y.; Zhu, C.; Worsley, M. A.; Duoss, E. B.; Spadaccini, C. M. et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017, 17, 7171–7176.

    Article  CAS  Google Scholar 

  44. Zheng, Y. Y.; Yang, J.; Lu, X. B.; Wang, H. L.; Dubale, A. A.; Li, Y.; **, Z.; Lou, D. Y.; Sethi, N. K.; Ye, Y. H. et al. Boosting both electrocatalytic activity and durability of metal aerogels via intrinsic hierarchical porosity and continuous conductive network backbone preservation. Adv. Energy Mater. 2021, 11, 2002276.

    Article  CAS  Google Scholar 

  45. Cheng, X. T.; Liu, Y. T.; Si, Y.; Yu, J. Y.; Ding, B. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 2022, 13, 2637.

    Article  CAS  Google Scholar 

  46. Guo, F.; Jiang, Y. Q.; Xu, Z.; **ao, Y. H.; Fang, B.; Liu, Y. J.; Gao, W. W.; Zhao, P.; Wang, H. T.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881.

    Article  Google Scholar 

  47. Wang, H.; Lu, W. B.; Di, J. T.; Li, D.; Zhang, X. H.; Li, M.; Zhang, Z. G.; Zheng, L. X.; Li, Q. W. Ultra-lightweight and highly adaptive all-carbon elastic conductors with stable electrical resistance. Adv. Funct. Mater. 2017, 27, 1606220.

    Article  Google Scholar 

  48. Dou, L.; Si, Y.; Yu, J. Y.; Ding, B. Semi-template based, biomimetic-architectured, and mechanically robust ceramic nanofibrous aerogels for thermal insulation. Nano Res. 2022, 15, 5581–5589.

    Article  CAS  Google Scholar 

  49. Tang, X. W., Zhou, H., Cai, Z. C., Cheng, D. D., He, P. S., **e, P. W., Zhang, D., Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511

    Article  CAS  Google Scholar 

  50. Ye, Z. M.; Zhao, B.; Wang, Q.; Chen, K.; Su, M.; **a, Z. Y.; Han, L.; Li, M.; Kong, X. B.; Shang, Y. Y. et al. Crack-induced superelastic, strength-tunable carbon nanotube sponges. Adv. Funct. Mater. 2023, 33, 2303475.

    Article  CAS  Google Scholar 

  51. Guo, H. L.; Fei, Q. Y.; Lian, M.; Zhu, T. Y.; Fan, W.; Li, Y. M.; Sun, L.; de Jong, F.; Chu, K. B.; Zong, W. et al. Weaving aerogels into 3D ordered hyperelastic hybrid carbon assemblies. Adv. Mater. 2023, 35, 2301418.

    Article  CAS  Google Scholar 

  52. Han, L.; Li, X. J.; Li, F. L.; Zhang, H. J.; Liu, X. Y.; Li, G. Q.; Jia, Q. L.; Zhang, S. W. In-situ preparation of SiC reinforced Si3N4 ceramics aerogels by foam-gelcasting method. Ceram. Int. 2022, 48, 1166–1172

    Article  CAS  Google Scholar 

  53. Liang, C. Y.; Wang, Z. J. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 2019, 373, 598–605.

    Article  CAS  Google Scholar 

  54. Su, L.; Wang, H. J.; Niu, M.; Dai, S.; Cai, Z. X.; Yang, B. G.; Huyan, H. X.; Pan, X. Q. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 2020, 6, eaay6689.

    Article  CAS  Google Scholar 

  55. Liang, X. P.; Shao, Z. J.; Wu, Z.; Wang, J. Y. Flexible SiC nanowire aerogel with excellent thermal insulation properties. Ceram. Int. 2022, 48, 22172–22178.

    Article  Google Scholar 

  56. Zong, D. D.; Bai, W. Y.; Yin, X.; Yu, J. Y.; Zhang, S. C.; Ding, B. Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv. Funct. Mater. 2023, 33, 2301870.

    Article  CAS  Google Scholar 

  57. Tong, Z. W.; Zhang, B. J.; Yu, H. J.; Yan, X. J.; Xu, H.; Li, X. L.; Ji, H. M. Si3N4 Nanofibrous aerogel with in situ growth of SiOx coating and nanowires for oil/water separation and thermal insulation. ACS Appl. Mater. Interfaces 2021, 13, 22765–22773.

    Article  CAS  Google Scholar 

  58. Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 2022, 16, 5487–5495.

    Article  CAS  Google Scholar 

  59. Fu, Q. X.; Si, Y.; Duan, C.; Yan, Z. S.; Liu, L. F.; Yu, J. Y.; Ding, B. Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv. Funct. Mater. 2019, 29, 1808234.

    Article  Google Scholar 

  60. Zhang, X. X.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J. 2022, 433, 133628.

    Article  CAS  Google Scholar 

  61. Zhang, X.; Liu, C.; Zhang, X. X.; Si, Y.; Yu, J. Y.; Ding, B. Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation. J. Mater. Chem. A 2021, 9, 27415–27423.

    Article  CAS  Google Scholar 

  62. Tang, H.; Gao, P. B.; Bao, Z. H.; Zhou, B.; Shen, J.; Mei, Y. F.; Wu, G. M. Conductive resilient graphene aerogel via magnesiothermic reduction of graphene oxide assemblies. Nano Res. 2015, 8, 1710–1717.

    Article  CAS  Google Scholar 

  63. Yang, G. C.; Yang, Y. W.; Chen, T. D.; Wang, J. Q.; Ma, L. M.; Yang, S. R. Graphene/MXene composite aerogels reinforced by polyimide for pressure sensing. ACS Appl. Nano Mater. 2022, 5, 1068–1077.

    Article  CAS  Google Scholar 

  64. Qin, Y. Y.; Peng, Q. Y.; Ding, Y. J.; Lin, Z. S.; Wang, C. H.; Li, Y.; Xu, F.; Li, J. J.; Yuan, Y.; He, X. D. et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015, 9, 8933–8941.

    Article  CAS  Google Scholar 

  65. Wang, C. H.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 2018, 12, 5816–5825.

    Article  CAS  Google Scholar 

  66. Zhao, J. X.; Zhang, Y.; Zhao, X. X.; Wang, R. T.; **e, J. X.; Yang, C. F.; Wang, J. J.; Zhang, Q. C.; Li, L. L.; Lu, C. H. et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Funct. Mater. 2019, 29, 1900809.

    Article  Google Scholar 

  67. Qiu, L.; Liu, D. Y.; Wang, Y. F.; Cheng, C.; Zhou, K.; Ding, J.; Truong, V. T.; Li, D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 2014, 26, 3333–3337.

    Article  CAS  Google Scholar 

  68. Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

    Article  CAS  Google Scholar 

  69. Li, X. H.; Liu, P. F.; Li, X. F.; An, F.; Min, P.; Liao, K. N.; Yu, Z. Z. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 2018, 140, 624–633.

    Article  CAS  Google Scholar 

  70. Lin, Z. Z.; Du, Y. Z.; Chi, C.; Dang, H.; Song, D. X.; Ma, W. G.; Li, Y. S.; Zhang, X. Energy-dependent carrier scattering at weak localizations leading to decoupling of thermopower and conductivity. Carbon 2022, 194, 62–71.

    Article  CAS  Google Scholar 

  71. Pei, S. F.; Wei, Q. W.; Huang, K.; Cheng, H. M.; Ren, W. C. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 2018, 9, 145.

    Article  Google Scholar 

  72. Yang, W.; Wang, N. N.; **, P.; Yuen, A. C. Y.; Li, A.; Zhu, S. E.; Wang, L. L.; Wu, J.; Chen, T. B. Y.; Si, J. Y. et al. Novel 3D network architectured hybrid aerogel comprising epoxy, graphene, and hydroxylated boron nitride nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 40032–40043.

    Article  CAS  Google Scholar 

  73. Wang, J. M.; Liu, D.; Li, Q. X.; Chen, C.; Chen, Z. Q.; Song, P. G.; Hao, J.; Li, Y. W.; Fakhrhoseini, S.; Naebe, M. et al. Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 2019, 13, 7860–7870.

    Article  CAS  Google Scholar 

  74. Zeng, X. L.; Ye, L.; Yu, S. H.; Sun, R.; Xu, J. B.; Wong, C. P. Facile preparation of superelastic and ultralow dielectric boron nitride nanosheet aerogels via freeze-casting process. Chem. Mater. 2015, 27, 5849–5855.

    Article  CAS  Google Scholar 

  75. Yin, J.; Li, X. M.; Zhou, J. X.; Guo, W. L. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 2013, 13, 3232–3236.

    Article  CAS  Google Scholar 

  76. Li, X.; Dong, G. Q.; Liu, Z. W.; Zhang, X. T. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy. ACS Nano 2021, 15, 4759–4768.

    Article  CAS  Google Scholar 

  77. Wen, D.; Liu, W.; Haubold, D.; Zhu, C. Z.; Oschatz, M.; Holzschuh, M.; Wolf, A.; Simon, F.; Kaskel, S.; Eychmüller, A. Gold aerogels: Three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 2016, 10, 2559–2567.

    Article  CAS  Google Scholar 

  78. Françon, H.; Wang, Z.; Marais, A.; Mystek, K.; Piper, A.; Granberg, H.; Malti, A.; Gatenholm, P.; Larsson, P. A.; Wågberg, L. Ambient-dried, 3D-printable and electrically conducting cellulose nanofiber aerogels by inclusion of functional polymers. Adv. Funct. Mater. 2020, 30, 1909383.

    Article  Google Scholar 

  79. Toivonen, M. S.; Kaskela, A.; Rojas, O. J.; Kauppinen, E. I.; Ikkala, O. Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv. Funct. Mater. 2015, 25, 6618–6626.

    Article  CAS  Google Scholar 

  80. Li, K.; Wang, S. N.; Chen, H.; Yang, X.; Berglund, L. A.; Zhou, Q. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 2020, 32, 2003653.

    Article  CAS  Google Scholar 

  81. Hüsing, N.; Schubert, U. Aerogels-airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 1998, 37, 22–45.

    Article  Google Scholar 

  82. Martín-Illán, J. Á.; Rodríguez-San-Miguel, D.; Castillo, O.; Beobide, G.; Perez-Carvajal, J.; Imaz, I.; Maspoch, D.; Zamora, F. Macroscopic ultralight aerogel monoliths of imine-based covalent organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 13969–13977.

    Article  Google Scholar 

  83. Hou, X. B.; Zhang, R. B.; Fang, D. N. Novel whisker-reinforced Al2O3-SiO2 aerogel composites with ultra-low thermal conductivity. Ceram. Int. 2017, 43, 9547–9551.

    Article  CAS  Google Scholar 

  84. Yu, Z. L.; Qin, B.; Ma, Z. Y.; Huang, J.; Li, S. C.; Zhao, H. Y.; Li, H.; Zhu, Y. B.; Wu, H. A.; Yu, S. H. Superelastic hard carbon nanofiber aerogels. Adv. Mater. 2019, 31, 1900651.

    Article  Google Scholar 

  85. Kim, K. H.; Tsui, M. N.; Islam, M. F. Graphene-coated carbon nanotube aerogels remain superelastic while resisting fatigue and creep over −100 to +500 °C. Chem. Mater. 2017, 29, 2748–2755.

    Article  CAS  Google Scholar 

  86. Jung, S. M.; Jung, H. Y.; Fang, W. J.; Dresselhaus, M. S.; Kong, J. A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 2014, 14, 1810–1817.

    Article  CAS  Google Scholar 

  87. Bi, H.; Chen, I. W.; Lin, T. Q.; Huang, F. Q. A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 2015, 27, 5943–5949.

    Article  CAS  Google Scholar 

  88. Zhao, J.; Zhang, Y. Z.; Chen, J. Y.; Zhang, W. L.; Yuan, D.; Chua, R.; Alshareef, H. N.; Ma, Y. W. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage. Adv. Energy Mater. 2020, 10, 2000099.

    Article  CAS  Google Scholar 

  89. Yang, H. S.; Li, Z. L.; Lu, B.; Gao, J.; **, X. T.; Sun, G. Q.; Zhang, G. F.; Zhang, P. P.; Qu, L. T. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018, 12, 11407–11416.

    Article  CAS  Google Scholar 

  90. Yang, H. S.; **, X. T.; Sun, G. Q.; Li, Z. L.; Gao, J.; Lu, B.; Shao, C. X.; Zhang, X. Q.; Dai, C. L.; Zhang, Z. P. et al. Retarding ostwald ripening to directly cast 3D porous graphene oxide bulks at open ambient conditions. ACS Nano 2020, 14, 6249–6257.

    Article  CAS  Google Scholar 

  91. Su, L.; Wang, H. J.; Niu, M.; Fan, X. Y.; Ma, M. B.; Shi, Z. Q.; Guo, S. W. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 2018, 12, 3103–3111.

    Article  CAS  Google Scholar 

  92. Su, L.; Wang, H. J.; Jia, S. H.; Dai, S.; Niu, M.; Ren, J. Q.; Lu, X. F.; Cai, Z. X.; Lu, D.; Li, M. Z. et al. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 2021, 15, 18354–18362.

    Article  CAS  Google Scholar 

  93. Ren, B.; Liu, J. J.; Rong, Y. D.; Wang, L.; Lu, Y. J.; **, X. Q.; Yang, J. L. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx cere–shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 2019, 13, 11603–11612.

    Article  CAS  Google Scholar 

  94. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  CAS  Google Scholar 

  95. Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575–1578.

    Article  CAS  Google Scholar 

  96. Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223.

    Article  CAS  Google Scholar 

  97. Rawson, S. D.; Bayram, V.; McDonald, S. A.; Yang, P.; Courtois, L.; Guo, Y.; Xu, J. Q.; Burnett, T. L.; Barg, S.; Withers, P. J. Tailoring the microstructure of lamellar Ti3C2Tx. MXene aerogel by compressive straining. ACS Nano 2022, 16, 1896–1908.

    Article  CAS  Google Scholar 

  98. Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

    Article  CAS  Google Scholar 

  99. Zhang, H. J.; Lin, C.; Han, T.; Du, F. P.; Zhao, Y. H.; Li, X. P.; Sun, Y. H. Visualization of the formation and 3D porous structure of Ag doped MnO2 aerogel monoliths with high photocatalytic activity. ACS Sustain. Chem. Eng. 2016, 4, 6277–6287.

    Article  CAS  Google Scholar 

  100. Zhao, J.; Pan, R. J.; Sun, R.; Wen, C. Y.; Zhang, S. L.; Wu, B.; Nyholm, L.; Zhang, Z. B. High-conductivity reduced-graphene-oxide/copper aerogel for energy storage. Nano Energy 2019, 60, 760–767.

    Article  CAS  Google Scholar 

  101. Zhu, X. Y.; Yang, C.; Wu, P. W.; Ma, Z. Q.; Shang, Y. Y.; Bai, G. Z.; Liu, X. Y.; Chang, G.; Li, N.; Dai, J. J. et al. Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 2020, 12, 4882–4894.

    Article  CAS  Google Scholar 

  102. Lupi, L.; Hudait, A.; Peters, B.; Grünwald, M.; Mullen, R. G.; Nguyen, A. H.; Molinero, V. Role of stacking disorder in ice nucleation. Nature 2017, 551, 218–222.

    Article  CAS  Google Scholar 

  103. Freytag, A.; Sánchez-Paradinas, S.; Naskar, S.; Wendt, N.; Colombo, M.; Pugliese, G.; Poppe, J.; Demirci, C.; Kretschmer, I.; Bahnemann, D. W. et al. Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions. Angew. Chem., Int. Ed. 2016, 55, 1200–1203.

    Article  CAS  Google Scholar 

  104. Fears, T. M.; Hammons, J. A.; Sain, J. D.; Nielsen, M. H.; Braun, T.; Kucheyev, S. O. Ultra-low-density silver aerogels via freeze-substitution. APL Mater. 2018, 6, 091103.

    Article  Google Scholar 

  105. Zhong, W. B.; Jiang, H. Q.; Yang, L. Y.; Yadav, A.; Ding, X. C.; Chen, Y. L.; Li, M. F.; Sun, G.; Wang, D. Ultra-sensitive piezoresistive sensors constructed with reduced graphene oxide/polyolefin elastomer (RGO/POE) nanofiber aerogels. Polymers 2019, 11, 1883.

    Article  CAS  Google Scholar 

  106. Alhwaige, A. A.; Herbert, M. M.; Alhassan, S. M.; Ishida, H.; Qutubuddin, S.; Schiraldi, D. A. Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol) aerogels. Polymer 2016, 91, 180–186.

    Article  CAS  Google Scholar 

  107. Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 2012, 57, 37–60.

    Article  CAS  Google Scholar 

  108. Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849.

    Article  Google Scholar 

  109. Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515–518.

    Article  CAS  Google Scholar 

  110. Zhang, X. X.; Wang, F.; Dou, L.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 2020, 14, 15616–15625.

    Article  CAS  Google Scholar 

  111. Chen, Z. H.; Zhuo, H.; Hu, Y. J.; Lai, H. H.; Liu, L. X.; Zhong, L. X.; Peng, X. W. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 2020, 30, 1910292.

    Article  CAS  Google Scholar 

  112. Dong, X. Y.; Cao, L. T.; Si, Y.; Ding, B.; Deng, H. B. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 2020, 32, 1908269.

    Article  CAS  Google Scholar 

  113. Li, C.; Ding, Y. W.; Hu, B. C.; Wu, Z. Y.; Gao, H. L.; Liang, H. W.; Chen, J. F.; Yu, S. H. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Adv. Mater. 2020, 32, 1904331.

    Article  CAS  Google Scholar 

  114. Lu, D.; Niu, M.; Zhuang, L.; Su, L.; Guo, P. F.; Gao, H. F.; Xu, L.; Cai, Z. X.; Li, M. Z.; Peng, K. et al. Strong, superelastic and multifunctional SiC@ pyrolytic carbon nanofibers aerogels. Carbon 2022, 192, 219–226.

    Article  CAS  Google Scholar 

  115. Si, Y.; Wang, X. Q.; Dou, L.; Yu, J. Y.; Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 2018, 4, eaas8925.

    Article  Google Scholar 

  116. Min, P.; Li, X. F.; Liu, P. F.; Liu, J.; Jia, X. Q.; Li, X. P.; Yu, Z. Z. Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 2021, 31, 2103703.

    Article  CAS  Google Scholar 

  117. Moon, I. K.; Yoon, S.; Chun, K. Y.; Oh, J. Highly elastic and conductive N-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 2015, 25, 6976–6984.

    Article  CAS  Google Scholar 

  118. Li, C. W.; Jiang, D. G.; Liang, H.; Huo, B. B.; Liu, C. Y.; Yang, W. R.; Liu, J. Q. Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications. Adv. Funct. Mater. 2018, 28, 1704674.

    Article  Google Scholar 

  119. Jiang, D. G.; Zhang, J. Z.; Qin, S.; Wang, Z. Y.; Usman, K. A. S.; Hegh, D.; Liu, J. Q.; Lei, W. W.; Razal, J. M. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 2021, 15, 5000–5010.

    Article  CAS  Google Scholar 

  120. Zong, D. D.; Cao, L. T.; Yin, X.; Si, Y.; Zhang, S. C.; Yu, J. Y.; Ding, B. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 2021, 12, 6599.

    Article  CAS  Google Scholar 

  121. Dou, L.; Zhang, X. X.; Cheng, X. T.; Ma, Z. M.; Wang, X. Q.; Si, Y.; Yu, J. Y.; Ding, B. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 2019, 11, 29056–29064.

    Article  CAS  Google Scholar 

  122. Cao, L. T.; Shan, H. R.; Zong, D. D.; Yu, X.; Yin, X.; Si, Y.; Yu, J. Y.; Ding, B. Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett. 2022, 22, 1609–1617.

    Article  CAS  Google Scholar 

  123. Zong, D. D.; Bai, W. Y.; Geng, M.; Yin, X.; Yu, J. Y.; Zhang, S. C.; Ding, B. Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 2022, 16, 13740–13749.

    Article  CAS  Google Scholar 

  124. Zhang, Q. Q.; Lin, D.; Deng, B. W.; Xu, X.; Nian, Q.; **, S. Y.; Leedy, K. D.; Li, H.; Cheng, G. J. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 2017, 29, 1605506.

    Article  Google Scholar 

  125. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    Article  CAS  Google Scholar 

  126. Guo, P. F.; Su, L.; Peng, K.; Lu, D.; Xu, L.; Li, M. Z.; Wang, H. J. Additive manufacturing of resilient SiC nanowire aerogels. ACS Nano 2022, 16, 6625–6633.

    Article  CAS  Google Scholar 

  127. Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; **e, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

    Article  CAS  Google Scholar 

  128. Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; **, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

    Article  Google Scholar 

  129. Tetik, H.; Orangi, J.; Yang, G.; Zhao, K. R.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 2022, 34, 2104980

    Article  CAS  Google Scholar 

  130. Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

    Article  CAS  Google Scholar 

  131. Wang, Z. P.; Wang, Y. S.; Chen, Y. J.; Yousaf, M.; Wu, H. S.; Cao, A. Y.; Han, R. P. S. Reticulate dual-nanowire aerogel for multifunctional applications: A high-performance strain sensor and a high areal capacity rechargeable anode. Adv. Funct. Mater. 2019, 29, 1807467.

    Article  Google Scholar 

  132. Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

    Article  Google Scholar 

  133. Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534.

    Article  Google Scholar 

  134. Dou, L.; Zhang, X. X.; Shan, H. R.; Cheng, X. T.; Si, Y.; Yu, J. Y.; Ding, B. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 2020, 30, 2005928.

    Article  CAS  Google Scholar 

  135. Qiu, L.; Huang, B.; He, Z. J.; Wang, Y. Y.; Tian, Z. M.; Liu, J. Z.; Wang, K.; Song, J. C.; Gengenbach, T. R.; Li, D. Extremely low density and super-compressible graphene cellular materials. Adv. Mater. 2017, 29, 1701553.

    Article  Google Scholar 

  136. Zhuo, H.; Hu, Y. J.; Tong, X.; Chen, Z. H.; Zhong, L. X.; Lai, H. H.; Liu, L. X.; **g, S. S.; Liu, Q. Z.; Liu, C. F. et al. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 2018, 30, 1706705.

    Article  Google Scholar 

  137. Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

    Article  CAS  Google Scholar 

  138. Yang, M.; Zhao, N. F.; Cui, Y.; Gao, W. W.; Zhao, Q.; Gao, C.; Bai, H.; **e, T. Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 2017, 11, 6817–6824.

    Article  CAS  Google Scholar 

  139. Long, S. S.; Feng, Y. C.; He, F. L.; Zhao, J. Z.; Bai, T.; Lin, H. B.; Cai, W. L.; Mao, C. W.; Chen, Y. H.; Gan, L. H. et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 105973.

    Article  CAS  Google Scholar 

  140. Xu, X.; Zhang, Q. Q.; Yu, Y. K.; Chen, W. L.; Hu, H.; Li, H. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio. Adv. Mater. 2016, 28, 9223–9230.

    Article  CAS  Google Scholar 

  141. Li, G. Y.; Zhu, M. Y.; Gong, W. B.; Du, R.; Eychmüller, A.; Li, T. T.; Lv, W. B.; Zhang, X. T. Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 2019, 29, 1900188.

    Article  Google Scholar 

  142. Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

    Article  CAS  Google Scholar 

  143. Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.

    Article  CAS  Google Scholar 

  144. Zhu, S.; Ni, J. F.; Li, Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020, 13, 1825–1841.

    Article  CAS  Google Scholar 

  145. Afroze, J. D.; Tong, L. Y.; Abden, M. J.; Yuan, Z. W.; Chen, Y. Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon 2021, 175, 312–321.

    Article  CAS  Google Scholar 

  146. Zhang, Q. Q.; Wang, Y.; Zhang, B. Q.; Zhao, K. R.; He, P. G.; Huang, B. Y. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 2018, 127, 449–458

    Article  CAS  Google Scholar 

  147. Im, H.; Kim, T.; Song, H.; Choi, J.; Park, J. S.; Ovalle-Robles, R.; Yang, H. D.; Kihm, K. D.; Baughman, R. H.; Lee, H. H. et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nat. Commun. 2016, 7, 10600.

    Article  CAS  Google Scholar 

  148. Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

    Article  Google Scholar 

  149. An, L.; Armstrong, J. N.; Hu, Y.; Huang, Y. L.; Li, Z.; Zhao, D. H.; Sokolow, J.; Guo, Z. P.; Zhou, C.; Ren, S. Q. High temperature ceramic thermal insulation material. Nano Res. 2022, 15, 6662–6669.

    Article  CAS  Google Scholar 

  150. Hu, F.; Wu, S. Y.; Sun, Y. G. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, 1801001.

    Article  Google Scholar 

  151. Wang, F.; Dou, L.; Dai, J. W.; Li, Y. Y.; Huang, L. Q.; Si, Y.; Yu, J. Y.; Ding, B. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angew. Chem., Int. Ed. 2020, 59, 8285–8292.

    Article  CAS  Google Scholar 

  152. Zhang, E. S.; Zhang, W. L.; Lv, T.; Li, J.; Dai, J. X.; Zhang, F.; Zhao, Y. M.; Yang, J. Y.; Li, W. J.; Zhang, H. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400 °C. ACS Appl. Mater. Interfaces 2021, 13, 20548–20558.

    Article  CAS  Google Scholar 

  153. Yang, H. S.; Li, Z. L.; Sun, G. Q.; **, X. T.; Lu, B.; Zhang, P. P.; Lin, T. Y.; Qu, L. T. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale. Adv. Funct. Mater. 2019, 29, 1901917.

    Article  Google Scholar 

  154. Yu, H. J.; Tong, Z. W.; Zhang, B. J.; Chen, Z. W.; Li, X. L.; Su, D.; Ji, H. M. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021, 418, 129342.

    Article  CAS  Google Scholar 

  155. Li, J. J.; Yang, S.; Jiao, P. Z.; Peng, Q. Y.; Yin, W. L.; Yuan, Y.; Lu, H. B.; He, X. D.; Li, Y. B. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 2020, 157, 427–436.

    Article  CAS  Google Scholar 

  156. Meng, X. Y.; Peng, X. L.; Wei, Y.; Ramakrishna, S.; Sun, Y. M.; Dai, Y. Q. Smart-simulation derived elastic 3D fibrous aerogels with rigid oxide elements and all-in-one multifunctions. Chem. Eng. J. 2022, 437, 135444.

    Article  CAS  Google Scholar 

  157. **, X.; Al-Qatatsheh, A.; Subhani, K.; Salim, N. V. Biomimetic and flexible 3D carbon nanofiber networks with fire-resistant and high oil-sorption capabilities. Chem. Eng. J. 2021, 412, 128635.

    Article  CAS  Google Scholar 

  158. Wang, C. H.; He, X. D.; Shang, Y. Y.; Peng, Q. Y.; Qin, Y. Y.; Shi, E. Z.; Yang, Y. B.; Wu, S. T.; Xu, W. J.; Du, S. Y. et al. Multifunctional graphene sheet-nanoribbon hybrid aerogels. J. Mater. Chem. A 2014, 2, 14994–15000.

    Article  CAS  Google Scholar 

  159. Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

    Article  CAS  Google Scholar 

  160. Kang, W. W.; Cui, Y.; Qin, L.; Yang, Y. Z.; Zhao, Z. B.; Wang, X. Z.; Liu, X. G. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J. Hazard. Mater. 2020, 392, 122499.

    Article  CAS  Google Scholar 

  161. Zhao, X. L.; Yao, W. Q.; Gao, W. W.; Chen, H.; Gao, C. Wet-spun superelastic graphene aerogel millispheres with group effect. Adv. Mater. 2017, 29, 1701482.

    Article  Google Scholar 

  162. Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

    Article  CAS  Google Scholar 

  163. Bayan, M. A. H.; Dias, Y. J.; Rinoldi, C.; Nakielski, P.; Rybak, D.; Truong, Y. B.; Yarin, A. L.; Pierini, F. Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications. J. Polym. Sci. 2023, 61, 521–533.

    Article  Google Scholar 

  164. Zhang, M.; Yang, D. Z.; Zhang, S. Y.; Xu, T.; Shi, Y. Z.; Liu, Y. X.; Chang, W.; Yu, Z. Z. Elastic and hierarchical carbon nanofiber aerogels and their hybrids with carbon nanotubes and cobalt oxide nanoparticles for high-performance asymmetric supercapacitors. Carbon 2020, 158, 873–884.

    Article  CAS  Google Scholar 

  165. Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 2022, 433, 133619.

    Article  CAS  Google Scholar 

  166. Zou, J. H.; Liu, J. H.; Karakoti, A. S.; Kumar, A.; Joung, D.; Li, Q.; Khondaker, S. I.; Seal, S.; Zhai, L. Ultralight multiwalled carbon nanotube aerogel. ACS Nano 2010, 4, 7293–7302.

    Article  CAS  Google Scholar 

  167. Lu, D.; Su, L.; Wang, H. J.; Niu, M.; Xu, L.; Ma, M. B.; Gao, H. F.; Cai, Z. X.; Fan, X. Y. Scalable fabrication of resilient SiC nanowires aerogels with exceptional high-temperature stability. ACS Appl. Mater. Interfaces 2019, 11, 45338–45344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Wu or Bin Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Chang, X., Wu, F. et al. Advanced nanofabrication for elastic inorganic aerogels. Nano Res. (2024). https://doi.org/10.1007/s12274-023-6369-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-023-6369-4

Keywords

Navigation