Log in

Nanoconfinement-induced water molecules and hydrogen molecules transport behaviors in ball-in-ball structure photocatalysts to improve hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The diffusion, adsorption/desorption behaviors of water molecules and hydrogen molecules are of great importance in heterogeneous photocatalytic hydrogen production. In the study of structure–property–performance relationships, nanoconfined space provides an ideal platform to promote mass diffusion and transfer due to their extraordinary properties that are different from the bulk systems. Herein, we designed and prepared a nanoconfined CdS@SiO2-NH2 nanoreactor, whose shell is composed of amino-functionalized silica nanochannels, and encapsulates spherical CdS as a photocatalyst inside. Experimental and simulated results reveal that the amino-functionalized nanochannels promote water molecules’ and hydrogen molecules’ directional diffusion and transport. Water molecules are enriched in the nanocavity between the core and the shell, and promote the interfacial photocatalytic reaction. As a result, the maximized water enrichment and minimized hydrogen-occupied active sites enable photocatalyst with optimized mass transfer kinetics and localization electron distribution on the CdS surface, leading to superior hydrogen production performance with activity as high as 37.1 mmol·g−1·h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

    Article  Google Scholar 

  2. Cui, T. T.; Li, L. X.; Ye, C. L.; Li, X. Y.; Liu, C. X.; Zhu, S. H.; Chen, W.; Wang, D. S. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

    Article  CAS  Google Scholar 

  3. Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

    Article  CAS  Google Scholar 

  4. Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

    Article  CAS  Google Scholar 

  5. Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

    Article  CAS  Google Scholar 

  6. Yu, M. Y.; Wang, T. Y.; Huang, C. X.; Wu, F.; Liu, X.; Huo, H. L.; Jian, H. W.; Liang, Z. K.; Ma, J. J.; Kan, E. J. et al. Enhanced charge separation by continuous homojunction with spatially separated redox sites for hydrogen evolution. Nano Res. 2023, 16, 12323–12330.

    Article  CAS  Google Scholar 

  7. Shi, L.; Meng, S.; Jungsuttiwong, S.; Namuangruk, S.; Lu, Z. H.; Li, L.; Zhang, R. B.; Feng, G.; Qing, S. J.; Gao, Z. X. et al. High coverage H2O adsorption on CuAl2O4 surface: a DFT study. Appl. Surf. Sci. 2020, 507, 145162.

    Article  CAS  Google Scholar 

  8. Yu, X. H.; Zhang, X. M.; Wang, H. T.; Feng, G. High coverage water adsorption on the CuO(111) surface. Appl. Surf. Sci. 2017, 425, 803–810.

    Article  CAS  Google Scholar 

  9. Yu, X. H.; Zhang, X. M.; Wang, S. G.; Feng, G. A computational study on water adsorption on Cu2O(111) surfaces: The effects of coverage and oxygen defect. Appl. Surf. Sci. 2015, 343, 33–40.

    Article  CAS  Google Scholar 

  10. Martinez-Casado, R.; Mallia, G.; Harrison, N. M.; Perez, R. First-principles study of the water adsorption on anatase(101) as a function of the coverage. J. Phys. Chem. C 2018, 122, 20736–20744.

    Article  CAS  Google Scholar 

  11. Noy, A.; Park, H. G.; Fornasiero, F.; Holt, J. K.; Grigoropoulos, C. P.; Baka**, O. Nanofluidics in carbon nanotubes. Nano Today 2007, 2, 22–29.

    Article  Google Scholar 

  12. Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, M. C.; Zhao, P. X.; Li, P. S.; Ji, Y. F.; Liu, G. P.; **, W. Q. Designing biomimic two-dimensional ionic transport channels for efficient ion sieving. ACS Nano 2021, 15, 5209–5220.

    Article  CAS  PubMed  Google Scholar 

  14. Li, X. Y.; Zhang, H. C.; Yu, H.; **a, J.; Zhu, Y. B.; Wu, H. A.; Hou, J.; Lu, J.; Ou, R. W.; Easton, C. D. et al. Unidirectional and selective proton transport in artificial heterostructured nanochannels with nano-to-subnano confined water clusters. Adv. Mater. 2020, 32, 2001777.

    Article  CAS  Google Scholar 

  15. Liu, Y. W.; Wu, X.; Li, Z.; Zhang, J.; Liu, S. X.; Liu, S. J.; Gu, L.; Zheng, L. R.; Li, J.; Wang, D. S. et al. Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nat. Commun. 2021, 12, 4205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, J. B.; Yuan, H. F.; Yang, G.; Liu, Y. F.; Qin, X. M.; Chen, Z.; Weng-Chon, C.; Zhou, L. M.; Fang, S. M. AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Res. 2022, 15, 1796–1802.

    Article  CAS  Google Scholar 

  17. Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, F. J.; Huang, K.; Wu, Q.; Dai, S. Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO2. Adv. Mater. 2017, 29, 1700445.

    Article  Google Scholar 

  19. Peng, S. S.; Shao, X. B.; Li, Y. X.; Jiang, Y.; Gu, C.; Dinker, M. K.; Liu, X. Q.; Sun, L. B. Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Res. 2022, 15, 2905–2912.

    Article  CAS  Google Scholar 

  20. Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lou, F. J.; Zhang, G. H.; Ren, L. M.; Guo, X. W.; Song, C. S. Impacts of nano-scale pore structure and organic amine assembly in porous silica on the kinetics of CO2 adsorptive separation. Nano Res. 2021, 14, 3294–3302.

    Article  CAS  Google Scholar 

  22. Dong, C. C.; Ji, J. H.; Yang, Z.; **ao, Y. F.; **ng, M. Y.; Zhang, J. L. Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO2. Chin. Chem. Lett. 2019, 30, 853–862.

    Article  CAS  Google Scholar 

  23. Li, Z. K.; Zhang, L.; Guo, L. H.; Hu, W. W.; Yu, A. F.; Zhai, J. Y. Manipulating functional groups between polyvinylidene difluoride and nanoparticles for high-performance triboelectric nanogenerator. Nano Res. 2023, 16, 11855–11861.

    Article  CAS  Google Scholar 

  24. Wang, Y. Y.; Wang, Z. J.; Zhao, L.; Fan, Q. N.; Zeng, X. H.; Liu, S. L.; Pang, W. K.; He, Y. B.; Guo, Z. P. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 2021, 33, 2008133.

    Article  CAS  Google Scholar 

  25. Wang, X. X.; Fujii, M.; Wang, X. X.; Song, C. S. New approach to enhance CO2 capture of “molecular basket” sorbent by using 3-aminopropyltriethoxysilane to reshape fumed silica support. Ind. Eng. Chem. Res. 2020, 59, 7267–7273.

    Article  CAS  Google Scholar 

  26. Caicedo, D. F.; dos Reis, G. S.; Lima, E. C.; De Brum, I. A. S.; Thue, P. S.; Cazacliu, B. G.; Lima, D. R.; dos Santos, A. H.; Dotto, G. L. Efficient adsorbent based on construction and demolition wastes functionalized with 3-aminopropyltriethoxysilane (APTES) for the removal ciprofloxacin from hospital synthetic effluents. J. Environ. Chem. Eng. 2020, 8, 103875.

    Article  CAS  Google Scholar 

  27. Otitoju, T. A.; Ooi, B. S.; Ahmad, A. L. Synthesis of 3-aminopropyltriethoxysilane-silica modified polyethersulfone hollow fiber membrane for oil-in-water emulsion separation. React. Funct. Polym. 2019, 136, 107–121.

    Article  CAS  Google Scholar 

  28. Hu, Y.; Wang, S.; He, Y. R. Interaction of amino acid functional group with water molecule on methane hydrate growth. J. Nat. Gas Sci. Eng. 2021, 93, 104066.

    Article  CAS  Google Scholar 

  29. Wang, C.; Leng, S. Z.; Xu, Y.; Tian, Q. Y.; Zhang, X. M.; Cao, L. Y.; Huang, J. F. Preparation of amino functionalized hydrophobic zeolite and its adsorption properties for chromate and naphthalene. Minerals 2018, 8, 145.

    Article  Google Scholar 

  30. Song, H. L.; Peng, Y.; Wang, C. L.; Shu, L.; Zhu, C. Y.; Wang, Y. L.; He, H. Y.; Yang, W. S. Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angew. Chem., Int. Ed. 2023, 62, e202218472.

    Article  CAS  Google Scholar 

  31. Yuan, P.; Southon, P. D.; Liu, Z. W.; Green, M. E. R.; Hook, J. M.; Antill, S. J.; Kepert, C. J. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742–15751.

    Article  CAS  Google Scholar 

  32. Peña-Alonso, R.; Rubio, F.; Rubio, J.; Oteo, J. L. Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy. J. Mater. Sci. 2007, 42, 595–603.

    Article  Google Scholar 

  33. Wang, W. Y.; Wu, Y.; Liu, T. Y.; Zhao, Y. F.; Qu, Y. T.; Yang, R. O.; Xue, Z. G.; Wang, Z. Y.; Zhou, F. Y.; Long, J. P. et al. Single Co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation. ACS Catal. 2022, 12, 2632–2638.

    Article  CAS  Google Scholar 

  34. Xu, X. Y.; Bao, Z. J.; Zhou, G.; Zeng, H. B.; Hu, J. G. Enriching photoelectrons via three transition channels in amino-conjugated carbon quantum dots to boost photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2016, 8, 14118–14124.

    Article  CAS  PubMed  Google Scholar 

  35. Majoul, N.; Aouida, S.; Bessaïs, B. Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 2015, 331, 388–391.

    Article  CAS  Google Scholar 

  36. Murthy, V. S.; Cha, J. N.; Stucky, G. D.; Wong, M. S. Charge-driven flocculation of poly(l-lysine)-gold nanoparticle assemblies leading to hollow microspheres. J. Am. Chem. Soc. 2004, 126, 5292–5299.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, S. S.; Wang, J.; **n, B.; Yang, Y. B.; Ma, Y. R.; Zhou, Y.; Yuan, L. J.; Huang, Z. L.; Yuan, Q. Direct observation of nanoparticles within cells at subcellular levels by super-resolution fluorescence imaging. Anal. Chem. 2019, 91, 5747–5752.

    Article  CAS  PubMed  Google Scholar 

  38. Kaminski Schierle, G. S.; van de Linde, S.; Erdelyi, M.; Esbjörner, E. K.; Klein, T.; Rees, E.; Bertoncini, C. W.; Dobson, C. M.; Sauer, M.; Kaminski, C. F. In situ measurements of the formation and morphology of intracellular p-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 2011, 133, 12902–12905.

    Article  CAS  PubMed  Google Scholar 

  39. Yan, J.; Zhao, L. X.; Li, C.; Hu, Z.; Zhang, G. F.; Chen, Z. Q.; Chen, T.; Huang, Z. L.; Zhu, J. T.; Zhu, M. Q. Optical nanoimaging for block copolymer self-assembly. J. Am. Chem. Soc. 2015, 137, 2436–2439.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22108214) and Joint Funds of the National Natural Science Foundation of China (No. U22A20391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guidong Yang.

Electronic Supplementary Material

12274_2023_6300_MOESM1_ESM.pdf

Nanoconfinement-induced water molecules and hydrogen molecules transport behaviors in ball-in-ball structure photocatalysts to improve hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, B., Xu, B., Li, H. et al. Nanoconfinement-induced water molecules and hydrogen molecules transport behaviors in ball-in-ball structure photocatalysts to improve hydrogen evolution. Nano Res. 17, 3752–3760 (2024). https://doi.org/10.1007/s12274-023-6300-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6300-z

Keywords

Navigation